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Ill recenit vears, inlolliviet aiid thevir uses have beeii inivestigated by3 iiiatieiiiaticiaiis,

St atist icianls, and en1ginevers. Ini 1987, the Amierican Matlieniatical Society "lponisored aL short

course onl "Noiiieiits inl Mat hemxatics" at its meeting inl Sanl Antoinio, Texas. This led to

at v'olitii Conitainiiing the six pap~ers (l('ivcVCel there. The voliuine wvas p'u hjlishd by the

Society Ill its Short Course Series as VTolunme 37 ili its Proccediugp of Symipo.gia 17t Applie,,d

* Afathic~natic~q.

Recently, Dr. Janies N laur of the National Security Agency niotedl at nmbhiler of

p~roblemL~s inl signal processinmg inl which nionlents of dhistrib~ution s wvere impo rtant. ani I yet

statisticianis and signal processor scientists wvere unaware of wvhat had been acconmplislied

by each other. He initiated discussions wvith Professor Peter Purduc of the Operations

Research Department of the Naval Postgraduate School and Professor Herbert Solomion of

lie Statistics Department. ait Stanford University about developing at conference inl which

mioliciiets and signal p)rocessing aiid their interaction w~ouild be featured. Professor Pur-duc

anld Profe-Ssor Solomlonl agreed to explore this idea andl they developed and co-chiaired a

Conference onl Momenits and Signal Processing wvhich was hield ait the Naval Postgraduate

School onl March 30-31, 1092. The Proceedings herein resulted fromn that conference.

Time Conference (level( p cI around eight speakers whose interests incuchde moments

.i11d statistics, Signal processing, and interactions betweeni the two. Professors Jerry Mendel

and Maix Nikias came from the signal lprocessinig conmmunity; Professors Satish Iyenlgar and

MIichiael Stephens came from thle statistical community. The remaining four, Professors

David Brillinger, Ken-Shinl Lii, Bruce Lindsay, and Ed W~egmian, came at the subject inl

different shadings emanating fromn the central core of the Conference.

The Conference was supplorted subs tanti vely by the Nationa~l Security Agency

and~ partially by the Office of Naval Research. Many thaniks aire due to these agencies. A

iiiiiifl cr of .overnmnem(ilt Scientists fromi the Department of Defense and a limited nlumlber of

-3ener('YAl colininunitv iteidees p~articip~ated inl the Conference. This led to a. lively audienice

of -10 to 50 p~articip~ants over' thme twvo clay period.

It is hioped that the Nvi'le availability of the papers iii this report will lead to mnore

cotii11mii11iicat loll betweeni the two comnmunities and of course w~ithin each group.
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ADAPTIVE BLIND EQUALIZATION,

Yuanjie Chen and Chrysostomos L. Nikias

Department of Electrical Engineering - Systems
Signal and Image Processing Institute

University of Southern California
Los Angeles, CA 90089-2564

'This work was supported in part by the Office of Naval Research under contract
N00014-92-J-1034 and the National Science under grant MIP-9206829
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ABSTRACT

This tutorial paper is focused on two topics, namely: (i) to describe system-
atic methodologies for selecting nonlinear transformations for blind equal-
ization algorithms (and thus new types of cumulants), and (ii) to give an
overview of the existing blind equalization algorithms and point out their
strengths as well as weaknesses. It is shown in this paper that all blind
equalization algorithms belong in one of the following three categories, de-
pending where the nonlinear transformation is being applied on the data:
(i) the Bussgang algorithms, where the nonlinearity is in the output of the
adaptive equalization filter; (ii) the polyspectra (or Higher-Order Spectra)
algorithms, where the nonlinearity is in the input of the adaptive equal-
ization filter; and (iii) the algorithms where the nonlinearity is inside the
adaptive filter, i.,., the nonlinear filter or neural network. We describe
methodologies for selecting nonlinear transformations based on various op-
timality criteria such as MSE or MAP. We illustrate that such existing al-
gorithms as Sato, Benveniste-Goursat, Godard or CMA, Stop-and-Go and
Donoho are indeed special cases of the Bussgang family of techniques when
the nonlinearity is memoryless. We present results that demonstrate the
polyspectra-based algorithms exhibit faster convergence rate than Bussgang
algorithms. However, this improved performance is at the expense of more
computations per iteration. We also show that blind equalizers based on
nonlinear filters or neural networks are more suited for channels that have
nonlinear distortions.

The Godard or CMA algorithm is probably the most widely used blind
equalizer in digital communications today due to its simplicity, low complex-
ity and constant modulus property. Its main drawbacks, however, are slow
convergence and no guarantee for global convergence starting from arbitrary
initial guess. We present a new method for blind equalization, the CRIMNO
algorithm (i.e., criterion with memory nonlinearity), which is shown to have
the same advantages as Godard (simplicity, low complexity, constant modu-
lus property) and yet guaranteeing much faster convergence. The CRIMNO
algorithm is flexible enough to address blind deconvolution problems when
the input sequence is colored.
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1 INTRODUCTION

Blind deconvolution or equalization is a signal processing procedure that recovers the input

sequence applied to a linear time-invariant nonminimum phase system from its output only.

Blind equalization algorithms are essentially adaptive filtering algorithms designed in such a way

that they do not need the external supply of a desired response to generate the error signal in

the output of the adaptive filter. In other words, the adaptive algorithm is "blind" to the desired

response. However, the algorithm itself generates the desired response by applying a nonlinear

transformation on sequences involved in the adaptation process. All blind equalization algorithms

belong to one of the following three categories, depending where the nonlinear transformation is

being applied on the data:

"* The Bussgang algorithms, where the nonlinearity is in the output of the adaptive equal-

ization filter;

"* The Polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the

input of the adaptive equalization filter;

"* The algorithms where the nonlinearity is inside the adaptive filter; i.e., the filter is non-

linear (e.g. Volterra) or neural network.

The purpose of this paper is to provide an overview of the existing blind equalization algo-

rithms and to discuss their advantages and limitations. Conventional equalization and carrier

recovery techniques used in multilevel digital communication systems usually require an initial

training period, during which a known data sequence (i.e., training sequence) is transmitted [43],

[45]. An alternative effective approach to this problem is to utilize blind equalizers which do not

require any known training sequence during the startup period.
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The paper describes systematic methodologies for selecting the nonlinearity based on various

optimality criteria. such as maximum likelihood (ML), mean-square error (MSE) or maximum

a posteriori (MAP). As an example, it is illustrated that such existing algorithms as Sato [46],

(471 Benveniste-Goursat [5], [6] Godard or CMA [22], [50] and Stop-and-Go [41] are indeed spe-

cial cases of the family of Bussgang techniques where the nonlinearity is memoryless [31, [4]. It

is demonstrated that the polyspectra-based algorithms exhibit faster convergence rate than the

Bussgang algorithms. However, this improved performance is at the expense of more computa-

tional complexity. On the other hand, blind equalizers based on nonlinear filters are well suited

for channels that have nonlinear distortions [39], [40].

The Godard algorithm is probably the most widely used blind equalizer in digital communica-

tions today due to its simplicity, low computational complexity, and constant modulus property.

Its main drawbacks, however, is slow convergence and no guarantee for global convergence (con-

vergence starting from arbitrary initial guess). The paper describes the development of the

CRIMNO algorithm (i.e., criterion with memory nonlinearity) which is shown to have the same

advantages as Godard algorithm (simplicity, low complexity, constant modulus property) and yet

guaranteeing much faster convergence [12], [13]. Extension of the CRIMNO algorithm to the case

of colored input signals is also presented.

The polyspectra-based adaptive blind equalization algorithms are also described in the pa-

per. In particular, the Tricepstrum Equalization Algorithm (TEA) [24], the Power Cepstrum

and Tricoherence Equalization Algorithm (POTEA) [7], and the Cross-Tricepstrum Equalization

Algorithm (CTEA) [8] are presented, as well as their advantages and limitations. It is shown

that these algorithms perform simultaneous identification and equalization of a nonminimum

phase communication channel from its output only. Simulations with PAM and QAM signals

5



demonstrate the effectiveness of the polyspectra- based algorithms.

Finally, the paper provides an overview of the neural network based adaptive equalization

algorithms either with or without a training sequence [11], [20], [26], [27], [39], [40], [49].

2 DEFINITION OF BLIND EQUALIZATION PROBLEM

Let us consider the discrete-time linear transmission channel whose impulse response {f(i)} is

unknown and possibly time-varying. The input data {x(i)} are assumed to be independent and

identically distributed (i.i.d.) random variables, with non-Gaussian probability density function.

Let us also assume, without loss of generality, that the sequence {x(i)} has mean E{x(i)} = 0

an(l variance E{Ix(i)12 } = Q'. If x(i) is real, we may drop the magnitude function and simply

write E{x 2 (i)}. Initially, noise is not taken into account in the output of the channel. From

Figure 2.1, it follows that the model we consider is

Y(i) = f(i) * x(i)

E f(k) x(i- k) (2.1)
k

where "*" denotes linear convolution and {y(i)} is the received sequence. The problem is to recon-

struct (or restore) the input sequence {x(i)} from the received sequence {y(i)} or, equivalently,

to identify the inverse filter (equalizer) {u(i)} for the channel.

From Figure 2.1, we see that the output sequence {j(i)} of the equalizer is given by

(i) = u(i) * y(i)
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= u(i) * (f(i) • x(i))

= u(i) * f(i) W x(i). (2.2)

So, to achieve

i(i) = x(i - D)eJd (2.3)

where D is a constant delay and 0 is a constant phase shift, it is required that

u(i) * f(i) = t5(i- D) (2.4)

where

b(i) (1)(e°)i = 0

0, otherwise.

Performing the Fourier transform on (2.4), we obtain

U(w). F(w) = e,(e-r). (2.5)

In other words, the objective of the equalizer is to achieve a transfer function

U(w) = 1 J(we ) (2.6)

In general, D and 0 are unknown. However, the constant delay D does not affect the reconstruc-

tion of the original input sequence {x(i)}. The constant phase shift 0 can be removed by a carry

recovery technique. As such, in the sequel, it will be assumed that D = 0 and 0 = 0.

Blind equalization schemes may be classified into three categories; i.e., those which utilize
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nonlinearities in the output of the adaptive equalization filter, those which place the nonlinearity

in the input of the adaptive equalization filter, and those which utilize adaptive nonlinear eqaal-

ization filters. The Bussgang equalization algorithms with memoryless or memory nonlinearity

belong to the first category whereas the higher-order cumulant-based equalizers (TEA, POTEA,

etc.) belong to the second category, as they perform memory nonlinear transformation on the

input data of the equalization filter. Blind equalizers based on nonlinear filters, such as the

Volterra filter or neural networks, belong to the third category. Figures 2.2 (a)-(c) illustrate the

block diagrams of the aforementioned three families of blind equalizers.

3 PERFORMANCE MEASURES FOR ALGORITHM EVAL-

UATION

Four different performance measures are usually considered in simulation experiments for the

testing of the blind equalization algorithms: the time-average squared error (EASE), the tran-

sitional symbol error rate (SER), the residual intersymbol interference (ISI) and the discrete eye

patterns [431, [44]. They are defined as follows.

Time-Average Squared Error(EASE or MSE)

At iteration (i), the mean square error in the output of the equalizer is defined as

1 N

EASE = N ]x(i - D) - .(i)] 2  (3.1)

where i(i) is the output of the equalizer at iteration (i) and x(i - D) is the corresponding true

value. Note that the delay D, which is introduced by the channel and the equalizer, does not
I

affect the recovery of the original information {x(i)}. However, it must be taken into account in
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the calculation of MSE (i). The MSE (i) gives a measure of both the noise and residual ISI at

the output of the equalizer.

Transitional Symbol Error Rate (SER)

The SER indicates the percentage of wrongly detected symbols in consecutive intervals of 500

symbols, i.e.,

SER = #of wrong detections in 500 symbols (3.2)
500

Residual ISI

The residual ISI in the output of equalizer is defined as follows. Let {f(i)} be the channel impulse

response and {u(i)} the equalizer tap coefficients at iteration (i). Let s(i) = f(i) * u(i), then

1 ) -s(i)02  - max{Is(i)}(.ISI(i) = ma~si[}(3.3)
max{Is(i)j12

Physically, this indicates the amount of ISI present at the output of the equalizer due to imperfect

equalization.

Discrete eye patterns

Discrete eye patterns (or equalized signal constellation) consist of all possible values of the output

of the equalizer, i(i), at iteration (i), drawn in two-dimensional space. We say that the

eye pattern is open whenever the ideal decoding thresholds are easily distinguishable between

neighboring equalized states.

In our simulations, all performance measures were calculated for many independent signal

and noise realizations. For the EASE, time averaging over 100 samples were performed for each

realization. The eye pattern at iteration (i) was obtained by drawing the output of equalizer for all

9



independent realizations and for a specific number of samples (for each realization) symmetrically

located around (i).

4 ALGORITHMS WITH NONLINEARITY IN THE OUT-

PUT OF THE EQUALIZATION FILTER

Let us assume that a guess for the impulse response of the inverse filter (equalizer), u9 (i) has

been selected. Then,

ug(i) * f(i) = b(i) + E(i) (4.1)

where E(i) accounts for the difference (error) between our guess ug(i) and the actual values of

u(i). If we convolve the initial guess of the inverse filter, {u 9 (i)}, with the received sequence,

{y(i)}, we obtain

i(i) = y(i) * ug(i)

= X(i) * f(i) * ug(i). (4.2)

Combining (4.2) with(4.1), we obtain

S=x(i) • (6(i)+E(i))

= [x(i) , 6(i)] + [(i) * C(i)]

= x(i) + n(i) (4.3)

10



where

n(i) = x(i) * E(i) (4.4)

is the "convolutional noise", namely, the residual ISI arising from the difference between our

guess u2 (i) and the actual inverse filter u(i).

Our problem now is to utilize the deconvolved sequence {f(i)} to find the "best" estimate of

{.(i)}; namely, {d(i)}. Note that in adaptive-filter literature d(i) is used to represent the desired

response [25]. Two criteria are employed to determine the "best" estimate of x(i) from the given
.'x

i(i) . These are the mean-square error (MSE) and maximum a posteriori (MAP).

Since the transmitted sequence x(i) has a non-Gaussian probability density function, the MSE

and MAP estimates are nonlinear transformations of x.(i). In general, the "best" estimate d(i) is

given by [3], [41, [23], [541.

d(i) = g[i(i)] (memoryless)

or

d(i) = g[.i(i), i(i - 1),..., i(i - m)] (mth - order memory) (4.5)

where g[.] is a nonlinear function with or without memory. The d(i) is fed back into the adaptive

equalization filter as shown in Figure 4.1. From this figure, it is also apparent that the nonlinear

function g[.] is in the output of the equalization filter.

4.1 Optimum Selection of Nonlinearities

4.1.1 Nonlinearities with MSE Estimates

In summary, a well treated classical estimation problem is as follows:

11



1(i) = x(i) + n(i) (4.6)

where

(i) n(i) is Gaussian. Note that if c(i) in (4.4) is long enough, the central limit theorem makes

the Gaussianity assumption for n(i) reasonable.

(ii) {x(i)} are independent, identically distributed (i.i.d.) and in general non-Gaussian. The

pdf of z(i) is known; in digital communications the {x(i)} are usually equi-probable discrete

signal points.

(iii) x(i) and n(i) are assumed independent.

Given the i(i), we seek the MSE estimate of x(i), namely, dmse(i).

From Van Trees [52, p. 58], it follows that the best MSE estimate of {X(i)} given {1(i)} is

the mean of the a posteriori density, i.e.,

~+00
dmse(i) = + dx xPx,/(x/1)

= E{x(i)/•(i)}. (4.7)

where P,1 j(x/1i) = is the a posteriori density; P, 1 j(x/1,) is Gaussian, N(x(i), Q,•),

with Q,, being the variance of {n(i)}; the a priori density P,(x) is the pdf of X(i), and P:/ )

behaves as a normalization constant in the integral of (4.7).

If x(i) is zero-mean Gaussian with variance Q.; i.e., P.(x) is N(O, Q•), (4.7) reduces to

12



dmse(i) Q-i (i) (4.8)

which. ill turn, implies that g[i(i)] is a linear function. However, when P.(x) is non-Gaussian,

the integral (4.7) can not be reduced to a simple expression and g[.] will be a nonlinear function.

In the sequel, we show dmse(i) versus i(i) when pdf P,(x) is uniform and Laplace.

Uniform Distribution

The a priori pdf is given by

-A <x <A
P.(x W (4.9)I 0, otherwise.

Consequently, the a posteriori pdf takes the form

JA1 (xI)-A < x < A
P=/i(xli) = (i) (4.10)

0, otherwise.

where

1 1 [ (X ( i)2]
A,(z,)- A j, exp 2 Q.

SfAI(x)dx.

,iitituting (4.10) into (4.7), we obtain dmse(i) as a function of i. However, this relationship is

r))t ,asy to express analytically and is obtained by numerical integration as shown in Figure 4.2.

13



Laplace Distribution

The a priori density is given by

P-(x) = AexpE-XII11 (4.11)
2

and thus the a posteriori density takes the form

A 2 (x,x) (4.12)

where

A 2(X, .) = -exp [- ,Axl 1 exp[- 2X i j
2 2Q,.,

B()= J00A2 (x)dx.

Combining (4.12) with (4.7) and using numerical integration we obtain dmse vs f as shown in

Figure 4.3.

4.1.2 Nonlinearities with MAP Estimates

In this section we treat the estimation problem

:i(i) = x(i)+ n(i)

where n(i) is Gaussian and x(i) is i.i.d. non-Gaussian. However, we seek MAP estimate of x(i),

namely dmap(i) when n(i) is white or colored, or correlated with x(i). The colored noise case,

14



as well as the case of correlated noise with x(i), will result into a memory nonlinear relationship

between dinap and .( i): .c., dniap( i) = g[P(i), i(i - 1), ... ,(I - m)]. If x(i) is Gaussian i.i.d.

and n(i) is white Gaussian, independent from x(i), then the dmap(i) is identical to dmse(i) and

is given by (4.8).

If we denote x = [x(i), x(i - 1)..., x(l)] and i = [(i),i(i- 1),..., i(1)], then a posteriori

pdf is given by Van Trees [p. 58]

P•i(4 =F(:_). P~t/_(V_/) (4.13)

P(.i)

and the MAP estimate, dnap, of I given i is the value of x which maximizes t(_), where

e(X) = fnP/,•_(i/x) + fnPx(_). (4.14)

where the denominator of (4.13) does not contribute to the maximization of 1(j).

CASE I: White Gaussian Noise

In this case the n(i) is white, Gaussian N(O,Q,), and independent of x(i). It is also assumed

that {x(i)} are i.i.d. and non-Gaussian. Consequently, joint pdfs are expressed as products of

marginal pdfs and the MAP estimate at each iteration {i}, dmap(i), is obtained by maximizing

f(x(i)) = tnPj_(./_) + tnP.(x).

That is to say that the estimation problem is decoupled and the resulting relationship

dinan(i) vs i(l). is memoryless.

The following memoryless nonLinearities can be derived.

15



(i) I;I iiform Distributioin (.I.!)

-A, i1(i) < -A

',it j ) I ,• , it,) <> N() < A (4.1.r)

Notte thatl p does Iot. depend on Q,,.

(ii) Laplace Distributioii (4. 11)

j ( i) + ,\Q,, i'(i) < -,\Q,,

dm1at,(i) 0, -AQ , <ý ý(i) <5 AQ ,.,I1,

I(i) - AQ., i(i) > AQ,,.

Itre the I.A\P estlinate depends on Q,,. For the symmetric uniform and Laplace a priori distri-

but ions the resulting a posteriori pdf, PU;t(j/i), is asymmetric.

Figures iA., and 41.5 illustrate the MAP memoryless nonlinearities.

CASE II: Colored Gaussian Noise

In this case we assume that n(i) is colored Gaussian N(O,R) where R is m x m correlation

nuatrix. On the other hand, {n(i)}. Based on these assumptions, the numerator of (4.13) is

" Pjx(i/.[) = [,= Px(z(i))] . P/(/. (4.17)
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and

rIl1171-I r(N:i)) = [r.\-(x)] m.
1=1

For mathematicad tractability, we consider the case in 2 and derive the memory nonlinear

relationships dtIzi)(i) vs .'.

For mn = 2 the correl;•thon riatrix takes the form

R= Q,,( , IpI <'* (4.18)
p 1

For simplicity, we also define the following vectors

X1 / , a(i)

Kr) == x_. (4.19)
X2 x(i -1

(i) Uniform Distribution (4.9)

Maximizing (4.17) is equivalent here to minimizing

J = (j_ x)TR-l(_ - x) (4.20)

with the restrictions -A < x, <_ A, -A < x2 < A. Hence, we seek a point in the area

X2 = {(xIX 2 ) : -A < x .\, -A < z: < Al such that J is minimized. Differentiating J

17



with respect to x, and x2 and setting the derivative to zero we obtain

(f'I - X, ) - p(x'2 - X.2) = 0

(i½., - X,2) - P(Xi - XI) = 0. (4.21)

I'rom (.1.21). it is apparent. that if X(-\°2, that is -A _< ., _ A and -A <i x 2 _< A, then

inla d Ip :I for 2•.\'. (4.22)

'I2inap i2

when _ is outside X., the mininuim is achieved on the boundary of X.2'. That is

dimap = k - A -sgnj.ýIj + (I - k)f~ji, - p(-;'2 - Asgn[±i2])]

d2map = (1 - k)- .A sgn[i 2] + k.f[;i2 - P(•i - Asgn[.iI])J

for i /X 2  (4.23)

where

A•, x> A

f(X) x, Ixl < A (4.24)

-A, x < -A.

(ii) Laplace Distribution (4.11)

To obtain the MAP estimate is equivalent to minimize

J = Ajx 1 j + Ajx 2 j + [(.j - x)TrRl( - x)( . (4.25)
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The necessary conditions are

Asgn[xl] + c(xl - ix) - Cp(X2 -- 2 ) = 0

Asgn[x 2] + c(X 2 - i 2 ) - Cp(X1 - il) = 0. (4.26)

where Clearly, (4.26) is a nonlinear system of equations. Two special cases

are the following: 1) when -A/c < :I - Px2, x 2 - Pxi <_ A/c, then dimap = 0, and 2)

when p = 0, the problem reduces to the case of white Gaussian noise.

4.2 The Bussgang Algorithms

Fig. 4.1 illustrates the Bussgang adaptive blind equalization algorithms when an LMS type or

stochastic gradient algorithm [53] is used for the adaptation of the equalizer coefficients, and the

nonlinearity g(o)[.] is memoryless [3], [4], [23]. The following equations, consistent with the block

diagram of Fig. 4.1, describe the Bussgang family of algorithms:

u(i) = [ul(i),-.., UN(i)]T equalizer taps

u(0) = [0,..., 1 ,...o]T initial tap values

y(i) = [y(i),..., y(i - N + 1)]T input to the equalizer block of data

S= 0,1,2,... iteration index
(4.27)

1(i) = u_(i)y(i) equalizer output or reconstructed sequence

d(i) =g()[Y(i)] - g(z)[uH(i)y(i)] output of nonlinearity

e(i) = d(i) - i(i) error sequence

g(i + 1) = m(i) +,py(i) . e(i) LMS-type adaptation
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4.2.1 Convergence Rate and Properties

From (4.27) and Figure 4.1,it is apparent that the output sequence of the nonlinear fuaition,

d(i). "plays the role" of the desired response or the training sequence. It is also

aptparent that the Bussgang technique is simple to implement and understand, and it may be

viewed as a minor modification of the original LMS algorithm (the desired response of the original

LMS adaptation is a memoryless transformation of the transversal filter output). As such, it is

expected that the technique will have convergence that will depend on the eigenvalue spread of

the autocorrelation matrix of the received data {y(i)}.

From (4.27), the LMS adaptation equation for the equalizer coefficients is given by

u(i + 1) = R(i) + L._y(i) e(i) (4.28)

If we obtain the expected value (ensemble averaging) of (4.28), we have

Ejju(i + 10} E{tL(i)} + jiE f{2(i) (g(3)((io)] - m

= E{u(i)} + uE {y(i)g(1*[i(i)]} - uE{y(i)i*(i)}. (4.29)

The adaptive algorithm converges in the mean when

E {j(i)g(a)*[(i)]} = E{y(i)i'(i)} (equilibrium)

and it converges in the mean-square when

E{_H(i)y(i)g(')[k(i)} = E{LH(i)y(i)(i)}_ _
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E {a,(i)y(t)'[2(i)I} = E{:(i)i( )}. (4.30)

'litis. it is vequired that the equalizer output Y:(i) be Bussgang at equilibrium.

Noit, that. identity (,1.30) states that the autocorrelation of i(i) (right-hand side) equals the

crv,- 4'our,,!,ation between i(i) and a nonlinear transformation of i(i) (left-hand side). Processes

whic' satisfy property (0.30) are said to be Bussgang [10]. In summary, the adaptive Bussgang

t. ,,•,iic'•i ,ivrgT wheii the equaliz,,r output sequence, {.B(i)}, b-ýcomes Bussgang (necessary

A ;•:It 1.astic gradint algorithm (steepest descent) essentially minimizes iteratively a perfor-

' fn, ihis'x J.(i -: I{G,[sý,(i)]} with respect to the equalizer coefficients 71(i). A more general

4 .,io qh, i.lr taps adaptation equation (4.28) is [25]

LA(i + 1) = LL(i) - pJV,,J(i) (4.31)

,.hi(oe w',,.(i) is the gradient of J(i). Differentiating J(i) by using the composite function rule,

,,'• taisi

= -E-{y(i). v[c_;(•(i))]} (4.32)

I vIdroppintg the expectation operation, i.x., by using a single-point unbiased estimate,
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,,-)(4.3

whlerv

C(i) Vj[G(:(i))]

- g(0'[1()] (i) (4.34)

1Fp;it.ioi (4.3.4) .-hows the rcla tionuhip betwvn tile nonlinear function gq(O)[.] used in the l1iis-ang

T,,,1hniqu,1s with the n,,mlinear cost function G[.] which defince the p•rformancc index, *7[.).

Ex;amrphc for our dilonsional modulation (PAM)

The first blind equalization algorithm was introduced by Sato in 1975 [47] for PAM signrds. He

chose th1, HiTn r l, nonlinear function

y(y)=:sgn[•] ('1..35)

wher, -r a gai•i paranmeter which must be choten to satisfy the 13misgang property (4.30) .c_,

-y Et•(i)1) /I#(l•(i)l2. (,1,3f)
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We could also write Sato's algorithm in terms of

12G(i) = -i - Y,1l (4.37)
2

4.2.2 Extension to QAM modulation

The extension of Bussgang algorithms to two-dimensional constellations (QAM) is somewhat

straightforward [3], [4]. In the case of two independent quadrature carriers, the conditional

mean estimate of an equivalent complex transmitted symbol x given the complex observation

= XK + j±I can be written as

d = E{x /i} -- g[iR] + Jg[it]. (4.38)

We keep the notation simple by omitting (i). For example, the Sato nonlinearity for QAM signals

takes the form [47].

9(.i) = -ycsgn(i) = 7{sgn[XR] + j sgn[ii]}. (4.39)

It is clear that real and imaginary parts of the data can be estimated separately. The complex

data equivalent of the adaptive Bussgang Techniques is described in (4.27), but with

g(I)[j(j)] z g(i)[jR(j)] + j g(Q)[j(i)]" (4.40)

(Cor•ieqwntly, the error sequence is

e(i) = {g(i)[-R(i)] - XR(i)} + j {gýi)[zt(i)] - -i(i)} . (4.41)
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For example, the "Stop-and-Go" algorithm introduced by Picchi and Prati [41] is an adaptive

Bussgang technique with the following nonlinearity

g[•i(i] = i(i) + 1Ai(i) - 1Ai(i)
2 2

1 . 1B.i
+-RBi(i) - -BV(i) (4.42)

2 2

where i(i) is defined as the quantizer (slicer) output in Figure 4.1 and (A, B) is a pair of integers

taking values (2,0) or (1, 1) or (1,-1) or (0,0). The values of (A,B) are generally different at

each iteration, and how they are chosen is described later in this section.

Another example of a Bussgang technique is the heuristic modification of the Sato algo-

rithm suggested by Benveniste and Goursat [5], [6]. In this case, the nonlinear function takes the

form

g[.i(i)] = (i) + k11:(i) - kl•i(i) +

k2[i(i) - i(i)1" [Tcsgn[((i)j- -(i)]

or

g[_i(i)] = I(i) + i(i) - i(i)j {k 1eJarg[i()-'(i)l+

k2[fCSgn[i(i)] - i(O)] (4.43)

whore k,, k2 are constants. From (4.38) we observe that the Benveniste-Goursat error function
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may be seen as a weighted sum of the Decision Directed (DD)) [43] and Sato errors. On the

other hand the "'Stop-and-Go" error function (-1.37) is the weighted sum of the DD error and

its conjugate. The weights of the two algorithms, however, are chosen in a completely different

nianner.

4.2.3 Unknown Carrier Phase: The Constant Modulus Property

Equation (4.33) can be written in polar coordinates as

d = E {x [i} = r ej°. (4.44)

If we assume that all rotated constellations are equally likely, since the carrier phase is

unknown, then the conditional mean d in (4.39) has the same argument as i, and is given by

d = l[•1]" e- -9g(1) (4.45)

where ý['] is a nonlinear function and i = R + 4, arg(.) = arctan[iI/iR]. Combining (4.39)

with (4.40) we obtain [3], [4], [23]

e(i) =d(i) - i(i)

= O[Jj(i)lJeJ~g[x()] - ,•(i)

= g[i1[(i)] 1]. (4.46)
"" I(i)I

Hence. the error term is independent of any fixed phase rotation of the signal constellation.

Equation (4.27) also represents the Bussgang technique for the case of unknown carrier phase,
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provided we substitute e(i) in (4.27) by e(i) of (4.41).

Example: The Godard (or CMA) Algorithm [22], [501

Under the assumption that all rotated constellations are equally likely, Godard [22] suggested

that fl][ in (4.41) be chosen as

j[iil] = Ij + RpliIP-' - l:ElP-1 (4.47)

where RP is a real constant. As we shall see this form has some very nice properties. Special

cases of (4.42) include

f[jiI] = (1 + R2)I'I - I i13 (p = 2)

and

§([1i1]) = R, (p = 1).

The parameter R, is a gain constant which has to be chosen according to (4.30). Since

g[•(i)] = I(i)(i)] (4.48)

combining (4.43) with (4 30), we obtain

EjIi(i)j2 + Rli(i)IP - Ip(i)12p} = E{If(i)I2}

or

R E{ti(i)j2 P} (4.49'= E{ji(i)IP)
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At perfect equalization, i(i) = x(i)ej' (assuming time delay D = 0), and thus

RP = m 2 p where mp = E{i(i)JPJ.

Combining (4.34) and 4.43), we obtain the Godard performance index nonlinearity, namely,

G(i(i)) = •(j(i)JP - Rp) (4.50)

Fig. 4.6 summarizes the nonlinear functions of the Bussgang iterative techniques.

4.2.4 The Sato and Benveniste-Goursat Algorithms

Sato [46] introduced the first blind equalization scheme in 1975 by introducing the sign non-

linearity to generate the desired response of the adaptive scheme shown in Figure 4.1, i.e.,

d(i) = y sgn [I(i)]. In 1986, Sato [47] extended his 1-D PAM algorithm to the multidimensional

blind equalization problem where all transmitted signals become vector processes and all impulse

responses (channel and equalizer) are square matrices. The extension, however, is straightfor-

ward. For example, in the two-dimensional case of QAM signals the "sign" nonlinearity becomes

the "complex sign" defined by (4.34). The error signal of the Sato algorithm

e,(i) = Y cgn [i(i)] - ;i(i) (4.51)

is very noisy around the solution unless the transmitted sequence x(i) takes only the values ±1.

In other words, although e,(i) is zero-mean at the solution, it has a large variance. On the other

hand, the Decision Directed (DD) error signal eD(i) = i(i)- i(i) ( see Figure 4.6) [33], though not

robost for blind equalizers, enjoys the property of being identically zero at the solution. Hence,
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Benveniste-Goursat [5] suggested the idea of combining (heuristically) both error signals in the

form of a weighted averaging as follows

eBG(i) = ki eD(i) + k2 es(i) IeD(i)I (4.52)

where kj, k2 are constants. The rationale behind the error expression (4.47) is the following.

Before the eye of the equalizer opens, JeD(i)I is large and thus the Sato error es(i) contributes to

the proper direction. At the opening of the eye and thereafter IeD(i)I becomes small and the DD

mode of the error eBG(i) takes over to speed up convergence and to achieve faster rate than the

original Sato algorithm with es(i). It is no wonder, therefore, that in our simulation experience

we have seen the Benveniste-Goursat (BG) algorithm exhibiting initially very slow convergence.

A faster convergence rate has been observed only after the eye opens. The Benveniste-Goursat

algorithm may be seen as the Sato algorithm that switches automatically to a DD one when the

eye of the equalizer opens. The extension of the Benveniste-Goursat algorithm to a Decision

Feedback Equalization (DFE) implementation [2] was given by Macchi et al. [32].

4.2.5 The Godard and Donoho (or Shalvi-Weinstein) Algorithms

The basic motivation behind the development of Godard's algorithm introduced in 1980 [22] was

to find a cost function that characterizes the amount of ISI at the equalizer output independently

of the carrier phase. Since the input sequence x(i) is i.i.d., the cost function that satisfies the

aforementioned conditions is

J(P) = E {(Ii(i)iP-j x(i)'P)"}, (4.53)
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which depends on the input sequence, For p = 2, and q = 2, j( 2 ) takes the form

j( 2) = E{I(i)I4 + IX(i)1 4 - 21p(i)121x(i)12} (4.54)

where we assume that E{x 2(i)} = 0. However, (4.48) or (4.49) can not be used in practice because

{x(i)} is inaccessible. To avoid this difficulty, Godard [22] suggested the use of a dispersion

function

D(P) = E{(I•(i)IP-Rp)q} (4.55)

which was shown to behave like the cost function J(P) and yet it is independent of the input

sequence. Note that RP is defined by (4.44). Assuming p = 2, q = 2, (4.49) and (4.50) can be

written as [22]

j( 2 ) = j, + j2+

I

{4(E{Ix(i)12})2 . If(O)l2 - 2(E{IX(i)12})2} • If(k)12  (4.56)
k

and

D(2) = j1 + .j2+

14(E{ IX(i)12})2. If(0)I 2 - 2E{ IX(i)I4}}{I If (k) 12 +R2 - E{ IX(i)14}} (4.57)

where T_' is taken for k $ 0 and

J, = E{IX(i)14} (1 - If(0)2) + E{Ix(i) 14}• y If(k)14 ,
k
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J2 = 2E'{tI(i)l•2}){ If(k)) - If(kW' } (41.4)

Comparing (4.51) with (4.52), we see that for D(2 ) to be similar to J(O) , the following inequality

must be satisfied:

4(E{I.r(i)12})'2 If(0)l 2 - 2E{IX(i)141 > 0

or

E{Ix(i)14 } 4.9
If(0)12 > 2(E{lx(i)12 })2  (4.59)

Godard suggests (4.53) and f(i) = 0 for i $ 0 as a way of initializing his algorithm.

Based on what has been reported in literature [50] and on our simulation experience, the

Godard algorithm has always converged to a minimum that opens the eye when Godard's initial-

ization procedure is being followed. The Godard algorithm is summarized in (4.2V) and Fig. 4.6.

Its convergence for p = 2 is better than p = 1. In addition, Godard noted that convergence im-

proves when the step size u is divided by 2 at each 10,000 iterations [22]. The Constant Modulus

Algorithm (C'INA), suggested independently by Treichler and Agee in 1983 [50], is the Godard

algorithm for p = 2 and R2 = 1. Ding et al. [15] reported that the Godard-type algorithms

exhibit local (not global) undesirable minima.

Shalvi and Weinstein recently introduced [48] a blind equalization scheme based on the idea of

matching the kurtosis measures between the transmitted sequence {x(i)} and the reconstructed

sequlence {I(iV} at the output of the equalizer. The kurtosis ot the input complex sequence x(i),

is defined by

K(x(i)) = E{jIx(i)I4 } - 2E 2 {tz(i)12} - IE{x 2(i)!}l 2  (4.60)
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which is zero for complex Gaussian random variables. The important point made in [48] is that

if E{[i(i)•2} = E{Il(i)12}, then (1) JK(i(i))l < IK(x(i))I and (2) JK(i(i))l = IK(x(i))I if

perfect equalization is achieved. Thus, the problem is to maximize the magnitude of the kurtosis

measure IK(•(i))I in the output of the equalizer at each iteration subject to the constraint

E{II(i)1-} = E{Ix(i)12}. One of the special cases of the Shalvi-Weinstein algorithm is the original

Godard algorithm. It has recently been recently reported that the Shalvi-Weinstein algorithm was

originally introduced by Donoho [16] for real-valued signals and that the algorithm's convergence

is only guaranteed for infinite-length equalization filters.

4.2.6 The Stop-and-Go and Decision-Directed Algorithms

The basic idea behind the Stop-and-Go algorithm, which was proposed by Picchi and Prati

[41] in 1987, is to retain the advantages of simplicity and fast convergence (in open eye-pattern

conditions) of the Decision directed (DD) algorithm [33] while attempting to improve its blind

convergence capabilities.

The adaptation error eD(i) used in the DD algorithm is [33]

eD(i) = i(i) - i(i) (4.61)

where .i(i) is the output of the equalizer and i(i) the output of the threshold detector. Assuming

that the equalizer initial tap setting corresponds to a closed eye-pattern, eD(i) will be large most

of the time due to the large number of incorrect decisions i(i). Consequently, the DD algorithm

cannot converge in closed eye-pattern conditions.

In the Stop-and-Go algorithm, Picchi and Prati proposed the use of the error sequence
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1
e(i) = -{A(i)eD(i) + B(i)eD(i)} (4.62)

2

where

A(i) = IR(i)+ II(i)

B(i) =IR(i) - It(i)

and

R = 1, if sgn[eD(i)]R = sgn[es(i)]RIR1
0, otherwise

ICi) =/ 1, if sgn[eD(i)]I- = sgn[es(i)]j

0, otherwise.

Note that es(i) is the Sato error given by (4.46).

From the foregoing, it is clear that the Stop-and-Go algorithm is essentially the DD algorithm

when the eye is open. It is mostly during closed eye-pattern conditions that the Stop-and-

Go adaptation rule takes place. Also, it is clear that the Benveniste-Goursat and Stop-and-

Go algorithms have different convergence properties when the eye-pattern is closed and similar

convergence properties when the eye is open. The modifications of this algorithms have been

proposed to incorporate joint equalization and carrier recovery, decision feedback equalization Ill

as well as fractionally spaced equalization [21), [451.
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4.3 The CRIMNO Algorithm

Although the Bussgang algorithms are different from each other, as we have seen, they perform

only memoryless nonlinear transformations on the equalizer outputs to generate the desired re-

sponse. This, in turn, implies that the cost functions they attempt to minimize with respect

to the equalizer coefficients are also memoryless. These algorithms do not explicitly employ the

fact that the transmitted data are statistically independent, which is the essence of the new crite-

rion we introduce in this section. Since statistical independence of the transmitted data involves

more than one data symbols, this results in a memory nonlinear transformation on the equalizer

outputs and thus a memory nonlinear cost function.

4.3.1 Criterion with Memory Nonlinearity

As we have seen, Godard solves the blind equalization problem by proposing a cost function

which is independent of the transmitted data, and yet reaches its global minimum at perfect

equalization. The Godard cost function ( also known as the constant modulus algorithm (CMA)

[22] is given by (4.50) and (4.44).

Note that only the expected value of some function of the current equalizer output appears

in Godard's cost function. Therefore, the Godard criterion only makes use of the probability

distribution of the transmitted data. It does not explicitly use the fact that the transmitted data

are statistically independent.

Assume that perfect equalization is achievable and consider the situation where perfect equal-

ization has indeed been achieved. That is

i(i) = x(i - D)
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where d is some positive number, which accounts for the delay. Since the transmitted data

x(i) are statistically independent from each other, so are the equalizer outputs i(i) at perfect

equalization. In addition, for most transmitted data constellations, the mean of transmitted data

x(i) is zero. Therefore, at perfect equalization , we have

E{i(i).-(i - 1)} = E{x(i - D)x*(i - I - D)} = E{x(i - D)} -E{ax(i - I - D)} = 0

By making use of this property and combining it with Godard's criterion, we obtain a new

criterion, called criterion with r, .mory nonlinearity (CRIMNO), which is the minimization of the

following cost function:

M(P) = woE (j1(i)jP - Rp)' + w, IE{f(i).F(i - 1)}12 + ... + wME{1(i)i*(i - M)} 2. (4.63)

The rationale behind the CRIMNO is that since each term reaches its global minimum at

perfect equalization, by appropriately combining them, we can increase the convergence speed of

the corresponding CRIMNO algorithm [12], [13]. This is clearly demonstrated in the simulations

section.

Remarks:

1. Memory nonlinearity: the CtRIMNO cost function depends not only on the current equalizer

output, but also on the previous equalizer outputs. As such, it results to a criterion with

memory nonlinearity. The parameter M determines the size of memory.

2. Generalization of the Godard criterion: when wo = 1, wi = 0 for i $ 0, the CRIMNO

cost function reduces to the Godard cost function. Therefore, the CRIMNO criterion may

be seen as a generalization of the Godard criterion.

34



3. Constant Modulus Property: the CRIMNO criterion preserves the constant modulus prop-

erty inherpr in Godard.

4.3.2 CRIMNO Blind Equalization Algorithm

Define the equalizer coefficient vector u(i) A [ul(i),.., UN(i)]T, and the received signal vector

y(i) =x [y(i),..., y(i - N + 1)]T, where N is the length of the equalizer. rhen the equalizer outputs

are

i(i _ 1) = yT(i _ 1). u(i), 1=, 1,., M, (4.64)

where superscript T denotes transposition of a vector.

Differentiating the cost function M(2) with respect to the equalizer coefficient vector u(i), we

obtain [12]

u_(i) - 4woE[y*(i)i(i)(ji(i)12 - R 2 )]

au( i)

+2w[E(y*(i- - 1)) + E(y*(i)i(i - 1))E(•(i)F(i - 1))]

+2wM[E(y_(i - M)i(i))E(i•(i)*(i-M))+ E(y(i)k(i-M))E(k(i)i"(i - M))]. (4.65)

By using the steepest descent method to search for the minimum point, we obtain

I_(i + 1) = _u(i) - a {4woE[y*(i)(i)(Ji(i)j 2 - R 2]
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+2-wj[E(y_*(i - 1).i(i))E(1'(i).(i - 1)) + E(y*(i)i(i - l))E(•:(i)!*(i - 1))]

+2wM[E(y*(i - M).i(i))E(i*(i)i(i - M)) + E(y_(i)i(i - M))E(i(i)i*(i - M))](4.66)

where

uR) [ul(i), ... uN(i)]r

In (4.6), the expectation are the ensemble averages taken with respect to transmitted data x(i)

while the channel impulse response f(i) and the equalizer coefficients u(i) are treated as fixed.

If we use single point estimates for the ensemble averages, we obtain the stochastic gradient

CRIMNO algorithm:

u(i + 1) = u(i) - a[4woy*(i)1(i)(p(i)[ 2 - R 2 ) + 2w 1(y*(i - 1)i(i)Jp(i - 1)12 + y*(i - 1)g(i - 1)lg(i)12)

+ + 2 wM(y*(i);(i)Ii(i - M)12 + y*(i - M)g(i - M)Ip(i)i 2)]

= _u(i) - a[y*(i)i(i) * (4wo0i(i)12 + 2wiji(i - 1)12 + + 2wMIi(i - M)12 - 4woR 2 )

+2wiy*(i - 1)g(i - 1)Ip(i)12 + + 2wMy*(i - M)(i M)I(i)j2]. (4.67)

Note that at each iteration, all equalizer outputs :(i - 1), 1 = 0, 1,.. , M are recalculated using

current (most recent) equalizer coefficient vector u_(i) via 5:(i - 1) = yT(i - l)u(i). This requires a

lot of computations. If, instead of using the current equalizer coefficient vector u(i), we use the

delayed equalizer coefficient vector _i(i - 1) to calculate i(i - 1). Note that (for small step-size,

which is required for the stability of stochastic gradient-type algorithm, the difference between

u(i) and u(i - 1) is negligible. Then at each iteration we will need to calculate only one equalizer
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output (i) using the current equalizer coefficient vector u(i).

4.3.3 Adaptive Weight CRIMNO Algorithm

The shape of the cost function depends on the choice of weight wt. So does the performance of

the CRIMNO algorithm. Here, we describe an ad hoc way of adjusting the weights on-line in the

blind equalization process.

The basic idea is to estimate the values of all terms in the CRIMNO cost function over a

block of data and then set the weights used in the next block proportional to the deviations of

the corresponding terms fromi their ideal values at perfect equalization. The rationale behind

this scheme is that if one term in the criterion has a large deviation from its ideal value, then in

the next block the weight associated with it will be set equal to a large value, and consequently,

the gradient-descent method will bring it down quickly.

To elaborate on this idea, we rewrite the CRIMNO cost function as

M(P)= woJo + WiJ.+1 +- + - WAfJM, (4.68)

where

J.0 -- RP)2

I= IE(I(i).i*(i - 1)12 1 < I < M. (4.69)
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lI)et liti, the dke,'iat ion of tht, It h terni I( .1 ) by

/)(./,) 4 It- J°), (4.70)

where, J1") is the value of J, at perfect equalization (J:O) - 0 1 = 1,.. A!). Then the weights

are ;dj usted using the following formulae:

{ 7yoD(Jo) 7 0 D(Jo) < A
WO =

IA -oD(Jo) > A

I, = { AD(Jj) yD(Ji) <A (4.71)

1 D( -7D(Jj) >_ A

where Ao > 0 is the scaling constant for the first term, y > 0 is the scaling constant for the other

terms in the CRIMNO cost function, and A is a constraint on the maximum value of the weights

to guarantee the stability of the algorithm.

The CRIMNO algorithm with weights adjusted in this way is called adaptive weight CRIMNO

algorithm. Some in-depth comments are provided below:

1. When the deviations of all terms vary proportionally, the adaptive weight scheme be-

comes an adaptive step-size algorithm. Moreover, the adaptation is done automatically.

So when the algorithm converges, then weights decrease to zero. Hence, the adaptive

weight CRIMNO algorithm acquires as a byproduct the decreasing step-size, which has

been proven to be an optimal strategy for equalization [51J.

2. For the adaptive weight CRIMNO algorithm, the shape of the cost function is changing.
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The local minima of the cost function are also changing. Thus, what is local minimum of

the cost function at one iteration may not be at the next iteration. However, whatever

the change of the weights, the global minimum does not change, and it always

corresponds to perfect equalization.

3. The adaptive weight CRIMNO algorithm tends to move out of a local minimum of the cost

function quickly, if the cost function has local minima and the algorithm gets trapped in

one of them. This is based on the following arguments. In the adaptive weight CRIMNO

algorithm, the equalizer coefficient increment, Au(i+1) = u(i+1)-_u(i) is a random vector,

the variance of which determines how fast the algorithm will move out of a local minimum.

The variance of the equalizer coefficient increment depends on the step-size a, gradient

a and the weights wl (proportional to D(J1 )). The step-size and gradient are the sameau(i)

with the fixed weight CRIMNO algorithm; we thus concentrate on the third one: wl, or

equivalently D(J1 ). At a global minimum of the cost function, D(J1 ) are all small, thus,

the variance of the equalizer coefficient increment is small. Therefore, the algorithm will

remain near the global minimum. However, that is not the case with a local minimum. In

that case, D(J1 ) will be large, therefore, the variance of the equalizer coefficient increment

will be large (relative ot the case at the global minimum), and the algorithm will move out

of that minimum quickly. Moreover, the larger the deviation D(J1 ), the more quickly the

algorithm will move out of the local minimum.

4. Blocks of data are used to estimate {J1 }. The block length should be sufficiently long to

make the variances of the estimates small, but not long enough to make the weight update

fall behind.
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4.3.4 CRIMNO Extensions

In this section, the CRIMNO ideas, i.e., memory nonlinearity, are extended to the following cases:

(1) the case of correlated inputs; (2) the case when higher-order correlation terms [38] are utilized.

Colored CRIMNO

One of the key assumptions in the CRIMNO criterion is that the transmitted data are independent

and identically distributed (i.i.d). However, in practice, this may not be true for QAM signals.

Usually, in order to overcome the phase ambiguity caused by the squaring loop for carrier recovery,

differential encoding techniques are used, which correlate the input data when the source symbols

are not equiprobable. Since the operations of differential encoding are known, the autocorrelations

of the input data can be derived. In the case where the autocorrelations of the input data are

known a priori, the CRIMNO criterion can be modified as follows:

M(P) = woE(Ii(i)IP - Rp) 2 + w1 IE(.(i)i*(i - 1) - 3112+...+ wMIE(:,(i).,*(i - M)) - f3MI 2 (4.72)

where /1 = E(x(i)x*(i - 1)) are the known autocorrelations of the transmitted data.

Higher-Order Correlation CRIMNO

Here, a criterion which exploits the higher-order correlations, such as the fourth-order statistics

of the equalizer output, is given below:

S(hP) = woE(Ii(i)IP - Rip) + whIE(i(i)i*(i- 1))- '

+ VjkIjE(.,(i)V(i - j)!(i - k)5.i(i - 1)12 (4.73)

j,k,l all different
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The performance of both (4.73) and (4.74) criteria needs to be investigated.

4.3.5 Computer Simulation

Computer simulations have been conducted to compare the performance of the adaptive weight

CRIMNO algorithm with that of the Godard (or CMA) algorithm. Fig. 4.6 shows the perfor-

mance of the adaptive weight CRIMNO algorithm, compared with that of the Godard algorithm

under the different step-sizes, including the optimum one: We see that the performance of the

adaptive weight CRIMNO algorithm is better than or approaches that of the Godard algorithm

with optimum step-size. Fig. 4.7 shows the performance of the adaptive weight CRIMNO algo-

rithm for different memory sizes (M = 2.4.6). Fig. 4.8 shows that the corresponding eye-patterns

at iteration 20000. We see that the larger the memory size M, the better the performance of

the adaptive weight CRIMNO algorithm. Table 4.2 lists the computational complexity of the

CRIMNO algorithm, the adaptive weight CRIMNO algorithm, and the Godard algorithm. We

see that there is only a little increase in computational complexity. Therefore, the performance

improvement is achieved at the expense of little increase in computational complexity.

5 ALGORITHMS WITH NONLINEARITY IN THE INPUT

OF THE EQUALIZATION FILTER

The Polyspectra Based Techniques

Another class of blind equalization algorithms are those algorithms which are based on higher-

order cumulants or polyspectra [36], such as the tricepstrum equalization algorithm (TEA)

[24], the power cepstrum and tricoherence equalization algorithm (POTEA) [7], and the cross-

tricepstrum equalization algorithm (CTEA) [8]. All these algorithms perform nonlinear transfor-
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mation on the input of the equalization filter. This nonlinear transformation, e.g. the generation

of the higher-order cumulants or polyspectra of the received data, is a memory nonlinear trans-

formation, because it employs both the present and the past values of the received data. The

use of the higher-order statistics of the received data is necessary for blind equalization, since

the correct phase information about the channel can not be extracted from only the second-order

statistics of the received data [14], [29], [34], [35], [37], (42].

5.1 Definitions and Properties: Cumulants and Higher Order Spectra

The readers are assumed to be somewhat familiar with the basic material of higher-order spectra.

However, some important properties which will be used in the subsequent sections are given.

5.1.1 Definitions

1. Definition of Cumulants:

Given a set of n real random variables {xI, x2 ,..., xn}, their nth joint cumulants of order

is defined as

L~~xl~~z-j, .,a a , .,, In'b(vI, V2,...Vn)

• " = -- XOVlaV2 ... , 19vn V1= V= ... =V = 0 (5.1)

where

0(vi, V2,, vn) = E{exp j(vix, +'" + vn~xn)}. (5.2)

Given a real stationary random sequence {x(i)} with zero meai, E{x(i)} = 0, then the

nth-order cumulant of the random sequence depends only on the time difference and is
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defined as

Lx(7-,7-2,...7n-,,_) ! (_j)nO.9n llý(vl,,,2,... ,v,,) VI = V2 =.=vn = 0 (5.3)
OvV9Ov2 . .. OrVn

where 7"1,'r2, • •., T,.-i are integers and

-'D 1(V1 ,V2 'i,"vn) = E{exp j(vIx(i) + v2 X(i+ 71) + .+ vnX(i + 7r-l))} (5.4)

Given a set of real jointly stationary random sequences {Xk(i)}, k = 1,2,--., n with zero

mean, E{Xk(i)} = 0, then the nth-order cross-cumulant of the sequences depends only on

the time difference and is defined as

L,,. ,r..,- -_(_jn annD,2,...n(v1,V2, vn) vV = v2 - v = 0

,2,--,n (71 , 2, -r I VlaV2 ... aV n

(5.5)

where 71, 7-2, .. ., rn-1 are integers and

x,2,...,(vi, v2,'", vn) = E {exp j (v 1zX1 (i) + v 2 X2 (i + T-i) + + vnXn(i + T,•1))} •

(5.6)

2. Definitions of Higher-Order Spectra.

Higher-order spectra are defined to be the Z-transforms of the corresponding cumulants

[34], [38]. Specifically, a nth-order spectrum of a real stationary zero mean random se-

quence {x(i)} is just the (n - 1)-dimensional Fourier transform of the nth-order cumulant

L?(r-, T-2,'", ,7",-) of the random sequence. That is
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tn-I

rl ,r2,'",?n- 1[=

When n' = 2, 3, 4 the corresponding spectrum is called power spectrum, bispectrum, and

trispectrum, respectively.

A nth-order cross-spectrum of a set of real stationary zero mean random sequences {xk(i)},

k = 1,2, . ., n, is defined as the (n - 1) dimensional Z-transform of the nth-order cumulant

L,,2,.....(r1, r2, r,- 1 ) of the random sequence, that is

n-I

r-,,,-l. Z ,i Z2'r, 1n r2 T - ) -1

3. Definitions of coherence.

Coherence is defined as the higher-order spectrum normalized by the power spectrum.

Specifically, a nth-order coherence of a real stationary zero mean random sequence x(i) is

defined as

Rx(zi, z2,'" z-,,-) S.(' Z2,(Sx(z,.z9,.•
[.(ZI)S.(Z2) ...-S(Z.-Ij 1u=1 z1)]2

An alternative definition for the nth-order coherence, which is equivalent to the above

definitions, is

=,z , Z2 n 1 S .(z I " z 2 .. . . ,z.._Z-1 (5 .10 )

4. Definitions of Cepstrum of Higher-Order Spectrum

The cepstrum is defined as the inverse Z-transform of the log function of the spectrum.

Specifically, a cepstrum for the nth-order spectrum of a real stationary zero mean random
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sequence {x(i)} is defined as

c•(r 1, , .. .,T,_.) • Z-' [1n S.(z,,z 2 ,. . .,z,_,)] (5.11)

A cepstrum for the nth-order cross spectrum of a set of real stationary zero mean random

sequence {x(i)}, i = 1, 2,..-, n, is defined as

Cx,1,...-,n(7l, 721 = Z-1 - 1 [in Sx,l,2,...,((z,, z2, , z- 1 (5.12)

When n = 2,3,4, the corresponding cepstrum is called power cepstrum, bicepstrum and

tricepstrum, respectively.

5.1.2 Properties

Some important properties of cumulants are shown below.

1. If XI, x 2 ,. -. , xn can be divided into two or more groups which are statistically independent,

then the cumulant L(xl, x 2 ,.. ., xn) is zero.

Specifically, if {x(i)} are an independent, identically distributed random variables, the nth-

order cumulant of the sequence {x(i)} is

Lx(,r I 2 ,.. .,'t- 1) = 7('r 1 )(T 2)-.. 6(r-_ 1 ) (5.13)

2. Cumulants of higher order (n > 3) are zero for Gaussian processes.

45



3. If {x(i)} and {y(i)} are statistically independent random sequences and, z(i) = x(i) + y(i),

then

L.(r1 , r 2 , - T-l.-I) = L(r, 2 , .... , r-I) + L(ri, r 2 , s,740) (5.14)

5.2 Tricepstrum Equalization Algorithm (TEA)

5.2.1 Problem Formulations

We assume that the received sequence after being demodulated, low-pass filtered and syn-

chronously sampled (at rate 7,) can be written as:

L2

y(i) = z(i) + w(i) = E f(k)z(i - k) + w(i) (5.15)
k= - L

where the nonminimum phase equivalent channel impulse response {f(i)} accounts for the trans-

mitter filter, non-ideal channel (or multipath propagation), and receiver filter impulse response;

the input data sequence {x(i)} is generally complex, non-Gaussian, white, i.i.d., with E{x(i)} =

0, E{x(i)3 } = 0 and E{z(i)4 } - 3[E{X(i) 2}] 2 = - 5 0; for example {x(i)} could be a multi-level

symmetric PAM sequence or the complex baseband equivalent sequence of a symmetric QAM

signal; the additive noise {w(i)) is zero-mean, Gaussian, generally complex and statistically in-

dependent from {x(i)}; we also assume that the channel transfer function F(z) (Z-transform of

{f(i)}) admits the factorization [24]

F(z) = A .I(z-'). O(z) (5.16)

the factor I(z 1 ) = U1.=l½-kL-i, Iakl < 1,jckj < 1, is a minimum phase polynomial, i.e., with

zeros and poles inside the unit circle. The factor O(z) = 1l21 (1 - bkZ), lbkI < 1 is a maximum
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phase polynomial, i.e., with zeros outside the unit circle. The parameter A is a constant gain

factor. Finally, the sequence {y(i)} is the input to the blind equalizer.

5.2.2 Relations of Tricepstrum of the Linear Filter Output

The input to the channel, x(i), is a non-Gaussian i.i.d. random sequence, thus

S ( zIZ2,Z 3) = (5.17)

The trispectrum of the output, y(i), of the channel (linear filter) is

S y(ZI, Z2, Z3) = -f.F(zj)F(z2)F(z3)F(z1 'z2'z3 1)

- A' A4 -. I(z)I(zj1) I(z 1) - I(zI, z2 , z3 ) 0(z) .O(z 2 ) . O(z 3 )- O(z7'z2 zK' 15.18)

Taking the logarithm of SY(zI, z2 , z3 ) and then the inverse Z-transform, after some manipulation,

we obtain [24]
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log(-t.A4) m=n=l=o

-;;ýA(-) m> O,n = 1 = 0

-'A(n) n > 0,m= 1 = 0

T1A(M I > 0, m =n = 0

1 -LB(--•) m < 0, n 1 0

cy(m, n, 1) = m (5.19)

n B(-') n < 0, m =1= 0

1B(-) I < 0, m =n =0

-ZB() m= n = > O

nA(n) m =n =1 < 0

0 otherwise

where, AU), B( are the minimum and maximum phase differential cepstrum parameters of the

system, corresponding to I(z-1) and O(z), respectively. They are defined as follows:

L 3  L4 L 2

A '() d-ef ,k- J q B(J) Ebji (5.20)
k=1 k=1 k=1

In addition, the following identity holds between the fourth-order cumulants L,(m, n, 1) and ,iae

tricepstrum c,(m, n, 1)

E JA(M)[L, (m- J, n,1) - Ly(m + J, n + J, I + J)] I +

E { B(J) [L,1 (m - J, ni - J1,1I- J) - L,(m + J, n, 1)]} = M . L31(m, n, 1) (5.21)
J=1
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where we define,
- A(J), J l,.o

J .c.,(J,O,O) =
I B(-J), J = 1 . -oo.

A(J), B(J), J = 1,2,.... are the minimum add maximum phase cepstral coefficients respectively,

which are related to the zeros F(z). However, in practice, the summation terms in (5.21) can be

approximated by arbitrarily large but finite values because A(¢) and B(J) decay exponentially as

J increases.

In practice the fourth-o- 'er cumulants L,(.) in (5.21) need to be substituted by their estimates

L4(.) obtained from a finite length window of the received samples {y(i)}.

The TEA algorithm, uses (5.21) in order to form an overdetermined system of equations,

i.e., we have more equations han unknowns. Then, TEA solves this ov-rdetermined system

of equations, adaptively, using an LMS adaptation algorithm. At each iteratiop an estimate of

the cepstral parameters {A(I)} and {B(')} is computed. The coefficients of the equalizer are

calculated for {A(')} and {B(g)} by means of the iterative formulas.

5.2.3 TEA Algorithm

Let:

{y(i)}: '1 he received zero-mean synchronously sampled communication signal.

N 1, N2: Lengths of minimum and maximum phase components of the equalizer.

p, q: Lengths of minimum ind maximum phase cepstral parameters.

jQ•')(m, n, 1): Estimated fourth-order moments of {y(i)} at iteration (i).

R (j): Estimated second-order moments of {y(i)} at iteration (i).

Y('),( , n, 1): Estimated fourth-order cumulants of {y(i)} at iteration (i).

Symmetric PAM or QAM Signaling:
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In general, for 1-D (e.g. PAM) or 2-D (e.g. QAM) signaling with symmetric constellations:

1i4)(m, n, 1) = iI,•)(m, n, 1)- i'()(m) -,09)(n - l)--Rki)(n).RýMi)(I - m)-1i')(l).(R,')(n - m) (5.22)

For symmetric square (L x L) QAM constellations:

n, (m, n, 1) (5.23)

"and A M B(J) are the minimum and maximum phase differential cepstrum parameters at iter-

ation (i) respectively. L 1 and L 2 are the orders of the minimum phase and maximum phase

components of the FIR channel, respectively. Note that, {ai}, jail < 1 and {f-}, Ibil < 1 are

the zeros of the minimum and maximum phase components of the FIR channel, respectively.

{u(i)}: The coefficients of the equalizer at iteration (i).

{ij(i)}: The coefficients of the equalizer at iteration (i).

At iteration (i): i = 1,2,...

Step 1 Estimate adaptively the L(i)(m,n,l), -M < m,n,l < M, from finite length win-

dow of {y(k)} as described below. M should be sufficiently large so that L.,(m,n,l) "- 0

for Iml, InI, III > M. Assuming that at iteration (0) we have received the time samples

{y(1),.. "Y(/lag)} we proceed as follows:

Stationary Case with Growing Rectangular Window

'•f)(m, n, 1) (1 - (i)) i-')(m, n, 1) + q(i) . y(S4)y(S -+ m)y(S4 + n)y(S' + 1) (5.24)

ki)wj= (1 - 77(i)). kJi-)(j) + 77(i) . y(S )y(S + j) (5.25)

where, ri(i Sa . = min(i + Ilag, i +'lgag - m,+'ag - n, i + ]iag - l), S2 = min(i+
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/tag. i + /lag - J). Finally substit ute (5.2.1) and (5.25) into (5.22) or (5.23).

Nonstationary Case

First Way:

for I < t list (5.2-.), (,5.25) with q(i)
I + Ilag

for i -> - h ,sv (5.2.1). (5.25) with q(i) t/ = lixed (5.26)

l s.hould havei a small v•alue (0 < I < 1), for exanp•le il = 0.01.

Second Way: (for symmetric L.2- QAM signaling)

5itice in this case the second-order nionient RI(j) = 0, we can use AIY(, n, it, 1) with a forgetting

factor w. 0 < uw < I as follows. (S', is as before):

1 i ) +nyi4l (.7

(i+llag)..Q(')(,n.n,1)f= w-(in-.+l.g) for l '-')(in,n, )+y(Swe)y(Sr++,)y(Sr.

and substitute (i + [lag) rz -1) for L(9(m, n, 1) everywhere.

Third Way:

Formulas (5.24) and (5.25) could be used in nonstationary environments by reinitializing the

algorithui after certain number of iteration or when a channel change is detected,

Remarks:

"• By usinv the symmetry properties of fourth-order cumulants only (2M+ cumulants need

By. . .. 24

to be calculated.

"* The assumption that 'lag data have been received at iteration (0) avoids ill conditioning

of the matrices of the system given in Step 3. It causes a delay to lag at the input of the
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equalizer.

Step 2

Select p, q arbitrarily large so that AMI _- 0 and BM -- 0 for I > p and J > q. For example,

C = 10-4 ( very small constant)

A)M_ 0 for I > P = int [logC]

BM )-0 for J>P=int log] (5.28)

where, int[.] denotes integer part and maxla:I < a < 1, maxlbil < 3 < 1.

Define: w = max(p, q), z < 1k, s < z.

Step 3

Using the relation:

P{A~ 1<,')("m - In,,1),- (',-(m+ +In +,+I} +

E {s'B, [14")(m - nn - J1,1 - J) - LD,,(m + J, n, 1)] } = -, -,. (m, n, 1) (5.29)
J=l

with m = -w,...,-1,1,...,w,n =-z,...,0,...,z and l = -s,...,0,...,s to form the overde-

termined system of equations:

P(i). (i) = i(i) i = 0, 1, 2,... (5.30)

where P(i) is [NP x (p + q)] (where Np = 2w x (2z + 1) x (2s + 1)) matrix with entries of the

form {L(')(m, n, 1) - L(i)(U, r, A)}; A(-)- [1, 'ý . (1) ,.,(q)]T (T denotes transpose)Y W ,0}; W W

52



is the (p + q) x I vector of unknown cepstral parameters; P(i) is the Np x 1 vector with entries

of the form {-m- L],(m, n, 1)}.

Step 4

Assume thatinitially a(O) = [0,.., 01T. Updateti(i) = [A(1),..(, ) ,B(1), . (B)]Tas follows

a(i + 1) = d(i) + A(l). p1H(i). (i), (5.31)

ý(i + 1) P(i) - P(i) . h(i), 0 < j(i) < 2/tr{PH(i) • P(i)} (5.32)

Step 5

Calculate the equalizer normalized coefficients. Initialize iin0(i,O) = Oin0(i,O) 1 and the

estimate:

k+1
linv(i, k) = •y[A ] . iin,.(i, k - n + 1)

n=2

k = 1,...,Ni (5.33)

b,,, (i, k)= 1 : [_-B37•)] .- ,,,n(i,k- k n + 1)
kn=k+l

k =-N2 (5.34)

where (i) is the iteration index taking values i = 1, 2, 3 ... Then,

finorm(i, k) = zi,,(i, k) * Linv(i, k), k = -N 2 ,..., 0,..., Ni (5.35)

where {*} denotes linear convolution.

Step 6
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Estimate the gain factor A(i) as follows: In step (1) we have already calculated:

(0, 0,o0) . (k))4
k

M-21 (0) • . ((k.)) (5.36)
k

where Q, = E{x(k))=, -y, E{tx(k)) 4} - 3. Q2 are known. Also:

k+1k) (,_)i(i, k -n+ l' k~ l .,p

6(i,k) = •1ZA - 61)'5(i,k- n + 1), k= -1,..,q (5.37)

n=k+i

and f(i,k) = i(i, k) *(i, k), {*} denotes convolution, Qi(i) = Ek(](i, k))2 , 7f(i) Ek(](i, k))4.

Then (the sign of a-- cannot be identified):

For L-PAM Signaling:

2

1 _(Q~.Qj(i)\ Ai (5.38)

For L2-QAM Signaling:

A i ( e-'. LO ( ) (5.39)

since 1, < 0 for equi-probable L2-QAM signaling.

Step 7

Let, y(i) = [y(i + N2),.. ., y(i - NI)]T and [-N2wrm(i)] = [fino,,(i, N2),..., i'norm(i, N1)]T. Fi-
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nally, the output of the TEA equalizer is:

:E(i) = - [f-.°im(i)]T . y(i) (5.40)

While most of the Bussgang blind equalization algorithms, which are based on non-MSE cost

function minimization, have not been shown to be globally convergent and cases of their mis-

convergence have been encountered, the TEA algorithm, designed as described above, is a more

reliable alternative, as it guarantees convergence.

Remarks:

1. Since Gaussian noise is suppressed in the fourth-order cumulant domain, the identification

of the channel response does not take into account the observation noise. Consequently,

the proposed equalizers work under the zero-forcing (ZF) constraint. For the same reason,

we expect that the identification of the channel will be satisfactory even in low signal to

noise (SNR) conditions.

2. The ability of the tricepstrum method to identify separately the maximum and minimum

phase components of the channel makes possible the design and implementation of different

equalization structures.

3. In the recursive formulas (5.37) we used the following properties that relate time impulse

responses with cepstrum coefficients: (i) a channel and its inverse have opposite in sign cep-

strum coefficients, (ii) the cepstrum coefficients of the convolution of two minimum phase or

two maximum phase sequences, are equal to the sum of the corresponding cepstrum coeffi-

cients of the individual sequences and (iii) two finite impulse response (FIR) sequences with
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conjugate roots have also conjugate cepstrum coefficients. These become unique features

of the TEA equalizer when is compared with other equalization schemes.

4. The described algorithm is based only on the statistics of the received sequence {y(i)} and

does not take into account the decisions {i(i)} at the output of the equalizer. Consequently

wrong decisions (and thus error propagation effects) do not affect the convergence of the

proposed equalization schemes.

5. Instead of using the LMS algorithm to solve adaptively the system of equations (5.30),

one may employ a Recursive Least-Squares (RLS) algorithm [25] which will have a faster

convergence at the expense of even more computations.

5.2.4 Power Cepstrum and Tricoherence Equalization Algorithm (POTEA) [7]

5.2.5 Relations of Power Cepstrum and Tricoherence of the Linear Filter Output

The problem is as formulated in Section 5.2.1, the channel output y(i) is the convolution of the

non-Gaussian i.i.d. random sequence x(i) with the channel impulse response f(i) plus some

noise. The cepstrum of the power spectrum of the channel output y(i), can be shown after some

algebra to be equal to [7].

InIA 2I m = 0

S+ B m > 0
c.,(m) = (5.41)

1[A(--) + B'(-m)j m < 0

0 otherwise
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where 4 (k), B(k) are the minimum and maximum phase cepstral coefficients of F(z). These are

L11 L4

t=1 i=I

L2

B(k) - bý, (5.42)

where {ai} and {bi} are the zeros of F(z) inside and outside of the unit circle respectively.

Remarks:

1. A(k), B(k) decay exponentially and thus their length can be truncated in practice at k = p,

so that A(P), B(P) are arbitrarily small.

2. If the channel F(z) has cepstral coefficients A(k), B(k), its inverse filter, U(z),

has cepstral coefficients -A(k), -B(k). It is also shown in [7] that if we define S(k) !2

A(k) + B(k) and r,(k) = E{y(i + k)y*(i)} , then the following relations holds:

P P

Z: S-(k) [-ry(m - k)] + E S(k) [ry(m + k)] = mr,(m), m = 1,.-.2p (5.43)
k=1 i =1

where p is some integer, the choice of which is discussed in [24]. Now let us consider the

cepstrum of the tricoherence.

Sy(;-1z7;2,3) 2 (5.44)Ry(-7 , Z2, Z3) = (Z -i -- 2 --- 9--Z-(5.4

It has been shown that the trispectrum of the received data satisfies:

S,(I -. Z2, Z3) = ( z" ')F(z2 )F*(z31 )F(Z 1 z2-1 z3 1 (.5.45)
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Therefore,

R V( z ý2 , z -3 ) = ~ ) F . *( z 2 ) l "(,3z • 1) l,, ( Z Iz 2 Z 3• )( ., 4 •

After some algebra, we obtain

lniAiI m = 0,n =0, 1O

- [A-(m) - B(m)] rn > 0, n 0, 1= 0

- [A-(--)-B-(-m)] m<0, n=0, l10

-¼In[A - B*(n)] m = 0,n > 0,l = 0

) -'[A*(-) - B*(-n)] m= O,n >0,1 = 0Ry(m, n,l1) 2 n (5.47)
S [A*(m) - B(m)] m = n = l > 0

1[A(-m) - B"(-m)] in = n = I < 0

-T[.4"('- B(l)] m = 0,n = 0,1 > 0

-Tf[A(-' B*(-0] m = 0, n = 0,1 < 0

0 otherwise

Taking the logarithm of both sides of (5.44), we obtain,

R1(z1,Z2,z3 ) [inS,(z 1,z 2 , z3 )- lnS;(zl,z 2 ,zi (5.48)
2 tJ

Differentiating with respect to Z, and performing inverse Z-transform, we obtain

2L,(m, n, 1) * Ly*(-m, -n, -1) * [-mRy(m, n,/)]

L;(-m, -n, -1) * [-mLy(m, n, 1)] + L,(m, n, 1) * (mL(m, n, 1)] (5.49)
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By defining the following functions:

01(m, n, 1) • L;(-m, -n, -1) * L,(m, n, 1)

02 (mn,n,l) (5.50)

are combining (5.49) and (5.50), we obtain:

201(m, n, 1) * [mRy(m, n,/)] = 02(m, n, 1) + O2(-m, -n, -1) (5.51)

Defining D(k) - A(k) - B*(k) and combining (5.47), we obtain:

P

_ D(k)[O(m - k,n - k,l- k) - Ol(m - k, n, l)]
k-=1

P

+ E D(k)[Ol(m+k,n+k,l+k)-Ot(m+k,n,l)I
k-=l

= 02(m, n, 1) + 0;(-m, -n, -l) (5.52)

A rule of thumb is to define w = p, z < w/2, h < z and then take m = -w,...,-1,1,...,w, nz

-z,. .. z, 1 = -h,... , h to form a linear overdetermined system to equations.

5.3 The POTEA Algorithm

In this section the POTEA algorithm is given in detail.

Let

N1, .V2: Lengths of minimum and maximum phase components of the equalizer.

p: Length minimum and maximum phase cepstral parameters,

At iteration i = 1,2,....
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Step 1 Estimate adaptively the L( )(m, n,1) for -M 1  m ,n, 1< MA, and r( )(m) for - M 2 <

in < A12 from a finite length window of {y(n)}, and then generate the following functions:

(mn, 1) L m, (-min , -41) * L (in, n, 1)

rn(., n, 1) = L((-in, -n, -1) * mL,' )(m,, n, 1)

Step 2 Choose p arbitrarily such that A(P+1) ; 0, B(P+1) 1  0 and define w =p, z_< !, It < z.

Step 3 Form the equations

P p

Z S(k) [-ry(m - k)] + Z S(k)[r,(m + k)] = rnr(m), 77,1 * .2p (5.53)
k=1 k=1

where S(k) = A(k) + B'(k), k = 1,...,p.

ED- D'k)[O(m - k,n - k, I- k) - ,1(m - k, n, l)
k=1

P

++ D(k)[01(m + k,n + k,1 + k) - 1(m + k,n , 1)
k=1

= 0 2(m, n, 1) + O0(-m, -n, -l) (5.54)

and the following system of equations

Pda = (5.55)

Qg= 0 (5.56)

where the matrices P/5 , a,b and 4 are defined above.
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Step 4 Solve adaptively the above systems employing LMS-type adaptation as follows:

a(i + 1) = &(i) + L(i)pH(iw(i) (5.57)

6(i + 1) = b(i) + #'(i)QH(i)C(i) (5.58)

where

'( P)= - Q(i)b(i)

2
0 < P(i) <trP2

2
S u'(i) r(HQ)

The algorithm at instant i minimizes the mean square error:

J(i) =E1t(i6(i

J'(i) = E•HiO()

Step 5 Calculate A(k) and B(k) as follows:

A(k) = S(k) + D(k)B(k) Sk) - D(k) 59)

2 2

Step 6 Calculate

k+l1ie(i," k) = 1 : [A( W ],qik -n -1, =1..N '.;

n=2
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_1 0
6eq (i, k) 0 i [-B(T•h)-n) (i,k - + 1),k= 1,...,-N 2  (5.61)

n=k+l

with initialization : 1eq(i,O) = oeq(i,O) = 1. The normalized (A = 1) estimate fiLnom(i,k)

at iteration (i) is given by:

ino,,m(i, k) = ieg(i, k) * 5eq(i, k) (5.62)

Step 7 Estimate gain factor A(i)

Step 8 The reconstructed transmitted sequence at iteration(i) is:

1 N1
i(i) - 1i Z•Nlnorm(i, k)y(i - k) (5.63)

AWi k=-N2

Computational Complexity

In this section the computational complexity of POTEA is presented and compared with the

computational complexity of TEA.

PAM

POTEA: 3(2M+1) 3 + 3(2M + 1) + 2p(Np + p + 1) + N2+8N+3 + (4M)3 log2 4M

TEA: 3(2M+1)
3 

+_3(2M + 1)+_(p+q)(2N+ 1)_+ N-8N--3
8 (4

QAM

POTEA: 4[3(2,+1)3 + 2(2M + 1) + 2p(2Np + 4p + 2) + N
2 +"N+3 + (4M)3 log2 4M]

TEA: 4 1  ) + (p+± q)(2Np, + 1) + N+•+6 1
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5.4 Cross-Tricepstrum Equalization Algorithm (CTEA) [8]

5.4.1 Problem Formulations

Assume we have n measurements at each time index k, yi(k),i = 1,2,.. .n, where

yi(k) = fi(k) * x(k) + ni(k) (5.64)

(shown in Figure 5.1 for n = 4) and

1. fi(k) is the impulse response of a discrete time linear time invariant system,

2. x(k) is a non-Gaussian, nth order white process with cumulant -y 5 0,

3. n,(k) is zero-mean additive noise, with ni(k) independent of nh(k) for i $ j and independent

of x(k). No assumptions are made about pdf for whiteness (in time) ef ni(k).

We also assume that each impulse response hi(k) is stable with no zeros on the unit circle and

that its Z transform F,(z) can be written as [8]

Fi(z) = AiIi(z-')Oi(z) (5.65)

where the Ai are gain constants, the ri are integer linear phase factors,

Ii(z -1) = -31 (1 - aiz ')
314 C-- .Z-1)
j=21 (1 c 2I)

ij the minimum phase component and

O,(z) = 11[(1-biiz)
j=6

63



is the maximum phase component, with zeros aij and poles cij inside and zeros bij outside the

unit circle (i.e. jaijI < 1, Ibii < 1, and Icjj < 1).

5.4.2 Relation of Cross-Tricepstrum of the Linear Filter Output

With the above assumptiu: s, the nth-order cross-spectrum of the yi(k) can be written as

n-1

Sy,1,2,.... (Zl,Z2,..-,z- .- 1) = -YF 1(zl)F 2(z2). .F-l(Z)-1)Fn(" Zi-1 (5.66)
i= 1

Taking the logarithm and performing inverse Z-transform on both sides, we obtain after some

algebra the following results:

ln'YX MI = Mn2 = •=rn-1 = 0,

-(1/mi)Aj(m,) mi > O,mi = O,j < i,

i =1, 2,.. ., n -1,

(1/rni)B,(-m,) mi< O,mrn = O,j $ i,

cy,1, 2 ,...,n(m1, m 2 ,", mn-1) = (5.67)
i = 1,2,...,n- 1,

-(1/m,)An(-mn) M = =... = mn- <0,

-(l/mn)B,(mn) M1 = M = Mn,_ > 0,

0 otherwise

with

Ls3 Lj4

Ai(k) E (aji)" - Z(C~j)k
j==1

L, 2

B:(k) - Z(bi)k. (5.68)
j=1
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This results means that the n-th order cross-cepstrum is non-zero on n lines only in its domain

and that on each of these lines we find the complex cepstrum of a zero-linear phase, scaled version

of one of the n impulse responses.

Now, to develop a least squares solution for the Ai and Bi, we take first partial derivatives of

the logarithm of (5.66), independently with respect to each of its variables, followed by inverse

- transforms. Letting Sy, 1,2 ...... (mi, m 2 ,.. ., mn-1) denote the n-th order cross cumulants of the

yi, we get the following n - 1 equations relating the cross cumulants to the cepstral coefficients:

Sy'l,2,....n(Ml, M2,... , ran) * (mi Cy,l,2,...,n(Ml, M2, ... , 9 n-l))

= -mi 2,...,

for 1 = 1,2,... n - 1. Each equations involves an (n - 1) dimensional convolution. However,

plugging in (5.67) reduces each equation to a single finite summation:

OO

E Aj(k)Sy,j,2,..... (tI, t2,. .. t-1) - Bj(k)Sy,j,2,._...(UI, U2, ... ,i Un--1)

k=1

-. An(k)Sy,,2......n(mi + k, mi + k,..., mi + k)

.Bn.(k)Sy,l,2....n(mi - k, mi - k,..., mi - k)

= -miSy,1 ,2,. _..n(ml,m2,..., rMn- 1) (5.69)

where

ti = mi-k

ui = mi+k

tj = uj = mJ j i.
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From equation (5.68) the sums in (5.69) decay, so we can truncate them to pi and qj for

the terms involving Ai and Bi respectively (see [8]) and rewrite (5.69) as a finite dimensional

vector dot product equation. Writing M > pi + qi + p,• + q, equations at M points in the n - 1

dimensional domain of SY,1,2 ... n we can form the overdetermined system

- = (5.70)

5.4.3 Cross-TEA (CTEA) Algorithm

In this section we describe the CTEA algorithm for bhnd equalization of QAM signals with four

receivers. The algorithm has two stages at each iteration:

1. Channel identification and deconvolution

2. Combining by use of a decision rule

Channel Identification and Deconvolution

Step 1. Estimate the cross-cumulants and kurtoses of the received data recursively.

Step 2. Form the systems of equations (5.70) and solve each system in turn to get the cepstral

coefficients for each channel'

Step 3. From the results of the previous step, estimate the forward and inverse channel impulse

responses up to a desired length.

Step 4. From the estimated forward impulse response and the kurtoses, estimate the gains A'j) for

each channel.

'The cepstral coefficients for channel four can be estimated from the solution of one of the three systems or an
average of all three.
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Step 5. With the estimated inverse response, f(4) (k), and the estimated gain for each chiannel,"i,inv-

deconvolve to estimate the input symbol as

1j= fi,inv (k)

Combining Decision Rules

As illustrated in Figure 5.1, from the four estimates ii(j) we need to form a single quantized

decisions i(j). We describe here an optimal combining rule in the case of a perfect equalizer, as

well as three sub-optimal schemes, arithmetic mean, majority rule, and median (which for n = 4

channels is equivalent to a-trimmed mean with a = 1).

Optimal Decision for the Perfect Equalizer [8]

We consider the following assumptions:

1. x(k) is complex and uniformly distributed,

2. ui(k) is the perfect equalizer for fi(k), i.e. fi(k) * ui(k) = 6(k), and

3. ni(k) are zero-mean, complex Gaussian variables with known variance a? and are indepen-

dent across channels.,

Since we will do symbol by symbol detection, we will drop the time index k for simplicity. With

these assumptions,

ii = x + ni * ui = x + hi.

Therefore, the conditional probability density of i given X, p(ilx), is complex Gaussian with

mean x and variance

7= lCE ui(k)I
k
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Since the noise in each channel is independent, the maximum likelihood estimate i of x given

the four observations .i (assuming x to be from a continuous distribution) is

-i 2., ,

where the subscript R and I denote real and imaginary parts respectively. Note that if the noise

has the same variance in all channels then this result reduces to the arithmetic man. If, on the

other hand, we assume that x belongs to a known discrete set V then we need to find I E D

which satisfies

min fZ-21.i,- _:12
i ED

or equivalently

min a &Z2 (1p12 - 2(-iR5 i,R + 1t;ij)

Of course the assumptions of perfect equalization and known noise variance are not realistic in

practice so we describe below three sub-optimal combining rules which we tested in our simula-

tions.

Arithmetic Mean

Step 1. Form a soft decision statistic
14

;(j) = 4 -(J)-

(If information is available about the relative quality of the channels then a weighted mean

could be used.)
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Step 2. Put i(j) through a decision device to get i(j).

Majority Rule

Step 1. Put each estimate through a decision device to form four decision statistics xi(j).

Step 2. If there is a plurality among the •i(j) in one region of the decision space then that is the

decision. If there is a tie ( all four different or two votes for each of two decisions) use

a tie-breaking procedure. One method would be to pick the decision region that has the

smallest average squared decision error. For example, if i(j) = &2(j) $ 13(J) =i4(:

2

Let d, = 11,(j) _(j)12

4

Let d2 = E I(i) - ii(j)12

i=3

Then

Choose il(j) dl :5 d2

i2(j) d2 > dl.

Median

Step 1. Order the real and imaginary parts of the 1i(j) separately.
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Step 2. Set

REAL{i(j)} = median{REAL{ii(j)}}

IMAG{i(j)} = median{IMAG{.i(j)}}

Step 3. Put i(j) through the decision to get :(j).

5.5 Computer Simulations

Computer simulations has been employed to compare the performance of the blind equalization

algorithms. The performance metric used are those in Sections 2. And the following issues are

addressed.

5.5.1 TEA vs. Bussgang-type Algorithms

Fig. 5.2-5.4 show the performance of the TEA algorithm, compared with that of Bussgang-

type algorithms, such as Godard, Benveniste-Goursat, Stop-and-Go algorithms. We see that the

TEA algorithm opens the eye much faster than the Bussgang-type algorithms. This performance

improvement is achieved at the expense of larger computational complexity.

5.5.2 POTEA vs. TEA

Fig. 5.5-5.6 show the performance of the POTEA algorithm, compared with that of TEA. We

see that the POTEA algorithm converges faster than the TEA algorithm. The performance

improvement is achieved at the expense of further increase in computational complexity.
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5.5.3 CTEA vs. TEA

Fig. 5.7-5.8 show the performance of the CTEA algorithm compared with that of TEA algorithm.

We see that the CTEA algorithm converges faster than the TEA algorithm for some channels.

The performance improvement is achieved at the expense of further increase in computational

complexity.

6 ALGORITHM WITH NONLINEARITY INSIDE THE EQUAL-

IZATION FILTER

Still another class of bind equalization algorithms are those algorithms which use Volterra filters

[9], [10] or neural networks [20], [26], [27]. This class of algorithms perform nonlinear operations

inside the equalization filter. It is therefore also be able to correctly extract the phase information

of the unknown channel from its output only. In this section, we will concentrate on those

algorithms based on neural network.

6.1 Review of Equalization Techniques Based on Neural Networks

Equalization is a technique which is used to combat the intersymbol interference caused by non-

ideal channels. Usually, equalizers are implemented using linear transversal filters [17], [18], [30],

[31]. However, when the unknown channel has deep spectral nulls or some severe nonlinear

distortions, such as phase jitter and frequency offset, linear equalizers are not powerful enough

to compensate all of these. That is why nonlinear filters, such as those implemented by Volterra

filter or neural network, come in and play an important role.

Neural Networks (NNWs) are mathematical models of theorized mind and brain activities.

T!ie fundamental idea of NNWs is to organize many simple identical processing elements into
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layers to perform more sophisticated tasks. The properties of NNWs include: massive paral-

lelism; high computation rates; great capability for non-linear problems, continuous adaptation;

inherent fault tolerance and ease for VLSI implementation, etc. All these properties make NNWs

attractive to various applications. Several neural network based algorithms have been proposed

for equalization problems.

1 Multi-Layer Perceptron

The multi-layer Perceptron (MLP) [39], [40] is one of the most widely used implementations

of NNWs. It comprises a number of nodes which are arranged in layers, as shown in Figure

6.1. A node receives a number of inputs x1,x 2,..., zx,, which are then multiplied by a set

of weights w 1 , w 2, .- , w,, and the resultant values are summed up. A constant v is added

to this weighted sum of inputs, known as the node threshold, and the output of the node

is obtained by evaluating a nonlinear (sigmoid) function, f(.), which is called activation

function.

The architecture of a perceptron can be described by a sequence of integers no, n2 , ., nk

where n0 is the dimension of the input to the network, and the number of nodes in each

successive layer, ordered from input to output, is ni, n2 ,-.., nk. In this notation, the MLP

produces a nonlinear mapping g = R'° - R'".

The updating of the connection coefficients of the MLP is done iteratively by using back-

propagation (BP) algorithm with the following formula:

(wi+, Vi+=) = (wi, vi) + Ai (6.1)
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and

de
2

Ai= -(/3,?) d(w,,cv) + c Ai-. " (6.2)

2 Self-Organizing Feature Maps

The topology by self-organizing feature map (SOM), which is introduced by Kohonen [26],

[27] consists of two layers of nodes, referred to as input layer and output layer, which are

fully connected with different connection weights. The inputs to the SOM can be any

continuous values, whereas each of the output-layer node represent a pattern class that the

input vector may belong to. That means the outputs of SOMs are discrete values, and

therefore, the SOM is sometimes also referred to as learning vector quantizer.

The SOM works iteratively as follows. First, find the set of connection coefficients W.

which is the closest to the input vector Ak,

Ak - W = min 1 Ak - W j. (6.3)
j=1

Second, perform the following quantization of the output-layer node:

1, if 11 Ak - Wg 11= rmin 11 hk - W iI

bg = (6.4)

0, otherwise.

and then move W. closer to Ak using the equation

,a( k) .[aý - Wig], j=g

Aw,:= 3(k). [aý - W,•], j E Nv,,j # g (6.5)

(0,
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where Nr is the topological neighborhood of the winning node b9 which consists b. itself

and its direct neighbors up to the depth 1,2,..., and a(k) and /3(k) are the learning rate

at time k.

6.2 The MLPs Equalization Algorithm for PAM and QAM Signals

The applications of MLP in equalization problems so far, have been limited to binary {0, 1} or

bipolar {-1, 1} valued data and real valued channel models [11], [20], [49]. In this section, we

introduce for the first time a new implementation structure of MLP which works well with

L-PAM (L > 2) and N-QAM (NL,4) signals.

Looking into a MLP structure, we find out that it is the sigmoid function of the output

layer nodes that confines the network outputs to the range [-1, 1]. In our equalization problem,

the signals are equally spaced and symmetric with respect to either the original point of the

coordinate, or to the x and y axes. Thus we can just scale up the node function of the

output layer by a constant factor C which is large enough to cover oi'r maximum

signal range, e.g., [-15,15] for 16-PAM or 256-QAM signals. So, for the output laver, we have

[30], [40]

1 -e OI

fM(x)=C. 1 + eaz' (cŽ> 1) (6.6)

as the activation function. For the hidden layers, we still use the sigmoid function

1 - eaX

. 1 + ez (6.7)

The idea of adding another constant e comes form the thought that a smaller a, equivalently,

a lower slope in Figure 6.2, would avo'd high vibration, and in turn, decrease the chance of
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diver-eiwe in the course of weight adjustment.

For coniplex channel models and QAM signals, we use complex connection coefficients to

get the weighted sum to which a complex threshold is added. Then the sigmoid functions of

the real and the imaginary parts of the threshold added weighted sum are evaluated separately.

Again, for the output layer nodes. the outputs are multiplied by a constant C. Using the steepest

descent formula (Eq. 6.1, 6.2). we get the adaptation algorithm of our new MLP equalizer which

is described in Table 6.1 [30], [40].

Simulation are conducted to examine the performance of MLP equalizers. The equalizer is

implemented by the new MLP structure with only one output node. The input data to the

system xi are assumed to be independent of each other. The delayed input sequence Xi-d, where

d is channel dependent, is used as the training sequence. The performance of MLP equalizers is

evaluated by calculating the mean square error (MSE) E[(x - i)2] and the average symbol error

rate (SER) of the quantizer output. The eye pattern of equalizer outputs around certain number

of iterations is shown in Figure 6.3.

Figure 6.4 illustrates the performance comparison between MLP and LMS-based linear transver-

sal equalizer with the same number of inputs. The structure (the number of nodes in the hidden

layer) of the MLP has been fine-tuned through experiment. The step size p of the LMS-based

equalizer is also optimized (the biggest value without causing divergence). From Fig. 6, it ap-

pfoars that the new structure of MLP works no much better, as a channel equalizer, than the

simple linear adaptive equalizer. As a matter of fact, both methods end giving similar results.
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7 CONCLUSIONS

The purpose of this paper is to provide a tutorial review of existing blind equalization algorithms

for digital communications. Three families of techniques have been described, nimely, the Buss-

gang techniques, the polyspectra-based tecniiques, and methods based on nonlinear equalization

filters or neural networks. The complexity of the Bussgang techniques is approximately 2N mul-

tiplications per iteration, where N is the order of the linear equalization filter. On the other

hand, the polyspectra-based techniques require approximately !N 3 multiplications per iteration.

However, as it has been demonstrated in the paper, the polyspectra-based techniques achieve

significantly faster convergence rate than the Bussgang techniques. Finally, it is pointed out in

the paper that blind equalizers based on nonlinear filters or neural networks are better suited for

equalization of channels with nonlinear distortions.
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Table 4.1 Nonlinear Functions of Bussgang Iterative Techniques.

u(i) = [U1 , (i),.--. UN(i)]T equalizer taps

y(i) [y(i),.. -, y(i - N + I)]T input to the equalizer block of data

At iteration{i}, i = 1, 2,.

-i(i) = uff(i) y_(i

e(i) = g( 1 - -(i)

u(i + 1) = u(i) + p y(i) e*(i)

Algorithm Nonlinear function: g[P(i)] =

LMS
training X(i) (linear)
mode

Decision
Directed •(i)
Mode

Sato 7 csgn [i(i)],

Benveniste- i(i) + ki (1(i) - i(i)) + k2li(i) - 1(i)1"

Goursat (f csgn[p(i)] - 1(i))

Godard . 1i(i)I + Rpi(i)IP-' -i(i)j2p-1}
p,q= 2

Stop-and-Go 1(i) + 1A (1(i) - i(i)) + B ((i) -(i)

(A,B) = (2,0), (1,1), (1,-i) or (0,0), depending
on the signs of DD and Sato errors
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Table 4.2 Comparison of Computational Complexity

CRIMNO Adaptive Weight CRIMNO
Godard (memory size M) (memory size M)

Version I Version II Version I
Real Multiplication 4N+5 4N+8M+5 MN+8M+4N+5 4N+10M+5
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Table 6.1 Complex MLP adaptation algorithm.

1). Assign small random complex numbers to all the connections and
thresholds.

2). Forward propagate inputs through the network:

n,

i,+,J' za,, * w1,,j + v,,, = a'+,.j + i.
1=1

_f-I Q
ai+,,j = f a,+lj) + j. f(aQi,,j),

where i = 1,. M (M is the number of layers), f(-) is the sigmoid
function, and get the output,

S= C "am,.

3). Present the training signal to find the output error,

emn em' [I - (~iIC)2j IC + je~1 [I _ (.iQ/C2J IC

where em = Xi-d - x.

4). Find the backpropagation error,
f. = 4 . [I _-laf.)2 + j- . )2- j••,

where
n,+= Z i,," .

1:=1

5). Adjust connections and thresholds:

wi,j,k(ln + 1) = WiJ,k(n) + 77. •~i+,(n) • aii(n),

vij(n + 1) = vij(n) + 3. -li(n).

where "*" denotes conjugate operator. The momentum term can also
be added.

6). Back to Step 2.
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MOMENTS, CUMULANTS AND SOME APPLICATIONS TO

STATIONARY RANDOM PROCESSES

BY DAVID R. BRILLINGER*

University of California, Berkeley

The paper ranges over some basic ideas concerning moments and

cumulants, focusing on the case of random processes. Uses of moments

and cumulants in developing large sample approximate distributions, in

system identification and in inferring causal connections of a network of

point processes are presented.

1. Introduction. Moments and cumulants find many uses in main

stream statistics generally and with random processes particularly.

Moments reflect the parameters of distributions and hence, as via the

method of moments, may be used to estimate distributional parameters.

Moments may be employed to develop approximations to the statistical

distributions of quantities, such as sums in central limit theorems and asso-

ciated expansions. Moments may be used to study the independence of

variates. Moments unify diverse random processes, such as point

processes and random fields, and diverse domains, such as the line or

space-time.

2. Ordinary case. One can begin by asking: What is a moment? To

provide an answer to this question, consider the case of the 0-1 valued

*Research partially supported by NSF Grant DMS-8900613

AMS 1980 subject classifications. Primary 62M10, 62M99.

Key words and phrases. Coherence, cumulant, moment, partial coherence, point pro-
cess, system identification, time series.
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variates X, Y, Z. For these variates

E{XYZ) = Prob{X = 1, Y = 1, Z = 1)
This provides an interpretation for a (third-order) moment in terms of a

quantity having a primitive existence, namely a probability. Higher-order

moments have a similar interpretation. One can proceed to general ran-

dom variables, by noting that these may be approximated by step (or sim-

ple) functions, see eg. Feller (1966), page 107.

Next one can ask: What is a cumulant? One answer is to say that it

is a combination of moments that vanishes when some subset of the vari-

ates is independent of the others. Suppose for evample that X is indepen-

dent of (Y, Z). The third order joint cumulant may be defined by

cum{X, Y,Z} = (1)

E {XYZ} - E {X }E {YZ} - E {Y}E {XZ} - E {Z}E {XY) + 2E {X)E {Y)E [Z)

By substitution one quickly sees that this last expression vanishes in the

case that X is independent of (Y, Z).

Expresion (1) gives one definition of a joint cumulant. An alternate

way to proceed is to state that that cumulant is given by the coefficient of

i 3a13y in the Taylor expansion of

logE { e i(ax +PY +'?z)}

supposing one exists.

Taking the log here converts factorizations into additivities and one sees

immediately why the joint cumulants vanish in the case of independence.

Streitberg (1990) sets down a sequence of conditions that actually

characterize a cumulant. These are:

1. Symmetry
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cum{X 1 , X 2 , }=cumX 2, X 1, ...

2. Multilinearity

cum {(X 1, X 2 , }=cXcum X 1,X 2 , "

cuMr X 1 +Y 1, X 2 , " " ) = cuM {X 1 , " ) + cuMr Y1, ... I

3. Moment property, if the moments of X and Y are identical up to order

k

cuM {X) = cuM {Y}
4. Normalization, in the expansion in terms of moments

cum{X 1, ... ,Xk}=E{Xl ... Xk) +

5. Interaction, if a subset is independent of the remainder

cumfX 1, . ,Xk} =0

Cumulants provide a measure of Gaussianity. If the variate X is nor-

mal, then

cumk {X I =0 (2)

for k > 2. (Here cumk denotes the joint cumulant of X with itself k

times.) Putting (2) together with the fact that the normal distribution is

determined by its moments, provides a particularly brief proof of the cen-

tral limit theorem. Namely suppose that X 1, X2, .. are independent

and identically distributed with E {X} = 0 and var {X} = 1. Suppose all

moments exist for X. Consider

Sn = (X 1 + +. +Xn )PIF (3)
Then

k

cumk {Sn} = n cumk {X) / n2

which tends to 0 for k > 2, as n tends to infinity, and in consequence Sn

has a limiting normal distribution.
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An error bound may be given for the degree of approximation of the

distribution of a random variable by a normal, via bounds on the cumu-

lants. In Rudzkis et al. (1978) the following result is developed. Con-

sider a variate Y with mean 0 and variance 1. Suppose that

H (k !)'+v
CUMk (y) 1 < Ak - 2

for some v > 0, H > 1, then in the interval 0 < u < 8/H

sup IProb {Y < u 4-)(u)I <

where

1 2A] 1/(1+2v)

In the case of a sum, such as (3), one can take A = Wn for example.

3. Time series case. Consider a stationary time series X(t) with

domain t = 0, ±1, ±2, . If the k-th moment exists, from the sta-

tionarity, the moment function

E IX(t+u 1) ... X(t+uk-I)X(t)}

will not depend on t, nor will the associated cumulant function

Ck(Ul, ,uk_1)

= cum {X(t+u 1),.• X(t+Uk-l),X(t)J (4)

The Fourier transforms of these ck (.) give the higher-order spectra of the

series. These functions may be estimated given stretches of data.

It was indicated, by property 5 above, that a joint cumulant measures

statistical dependence. This suggests formalizing the intuitive notation that

values at a distance in time are not strongly dependent via

, ... X ICk(U1, ... ,Uk-1)I < -0 (5)
U Uk-i
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for k = 2, -.. It is now direct to provide a central limit theorem for

sums of values of a stationary time series. One has

T
cumk X (t ) Ifj

p 1

= • ' ' • ,ck (t 1- tk , " " " ,tk- l- tk ) / T k/2

tl tk

.. I Ck( , Uk-)]/Tk/
t UUk-I

I c 2(u) k= 2
U

and

-)0 k>2
following (5), giving the limit normal distribution.

Another aspect of the use of cumulants is that a calculus exists for

manipulating polynomials in basic variates. Suppose that

Y =g(XI, ",XL)

= ,ai, . il, XL (6)

One has directly from (6) that

E {yk = m myE&IXE 1 ""• XL})

but perhaps more usefully, there are rules due to Fisher, see Leonov and

Shiryaev (1959), Speed (1983), providing an expression

cumk {Y 7="7'cum{Xj j • cl} ... cum {Xj " e Yp

where a = (c1, , p) is a partition of subscripts into blocks and the

y( are coefficients.

A time series analog of an expansion, like (6) for ordinary variates, is
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provided by the Volterra expansion

Y(t) = a0 + I, a l(t-u)X(u) + 7_, a2(t-Ul~t-u2)X(ul)X(u2) + <7)
U u I,U 2

Using the Cramer representation of the process, namely

X(t) = f ei'tdZx(k)

(7) may be written

a 0 + f e'AI(X)dZx(k) + ff ei(X+X2) A 2(X 2)dZx(XI)dZx(2) +

in terms of the Fourier transforms of the a I(.), a 2(.), -.. This form

often simplifies the development of particular analytic results.

Consideration now turns to the use of moments and cumulants in the

identification of nonlinear systems. In the case of a polynomial system

like (7), Lee and Schetzen (1965) develop estimates of the functions

a ,(.), a 2(.), " via empirical moments of the form

1 T-1
"-T , X(t+UIu) ... X(t+uk)Y(t)

t=O
for the case that the input, X(.), is Gaussian white noise.

For the case of stationary Gaussian input and a quadratic system

Y(t) = a0 + 1 al(t-u)X(u) + F a 2(tQ-U,t-u 2)X(uI)X(u 2) + noise
U UlU 2

Tick (1961) developed an estimation procedure as follows. Define the

cross-spectrum and cross-bispectrum via

cum ( dZx (X),dZy(i) = 8(X+ji)fx x(X)d Ad t

cum (dZx (Xk ),dZx (X),dZy (X3)) = 8(Xl+X 2+X 3)fXXY (X ,X2)d Xld X2d X3

respectively. One has

f X(X) = A 1(?)fxx(X)

fxxY(-)'l-X 2) = 2A 2(-XI,-X 2)fxx ()fxx (X2)
relations from which estimates of the transfer functions, A, may be

113



developed, based on estimates of the spectra that appear.

Another system that may be identified, in a like manner, takes the

form, for input X (.) and output Y (.),

U(t) I a(t-u)X(u)
U

V(t) = G[U(t)]

Y(t) = + Y b(t-u)V(u) + noise
u

i.e. involves an instantaneous nonlinearity, G [.j, and two linear filters. In

the case that X (.) is stationary Gaussian, one can develop the relationships

f yx (?X) = L 1A (X)B (X)fxx (X)

fxxy (?,,,X 2 ) = L2A (-XI)A (-2)B (-X•-X2)fxx (X•)fxx (X2)

where L 1, L2 are constants. See Korenberg (1973) and Brillinger (1977).

Estimates of the identifiable unknowns may be developed based on esti-

mates of the spectra appearing.

4. Point process case. Consider isolated points, trk, scattered along

the real line. Let N (t) count the number in (At] and dN (t) the number in

the small interval (t,t+dt]. Typically dN(t) will be 0 or 1.

The k -th order product density of the point process N (.) is Pk(.)

given by

E I{dN(t 1) .. dN (tk)

=Prob {dN(t 1)=1, • • , dN(tk)=l

= Pk(tI, " , tk)dtl ... dtk
for t 1, tk distinct and k = 1, 2, • • This relates to the moments
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of the process as follows. Write N(k) = N(N-1) ... (N-k+l), then the

k-th factorial moment of N (t) is

I I

EIN(t) k)f = " (t I " A It .. dtk
0 0

The corresponding cumulant density is given by

cum {dN(ti), ..-- ,dN(tk)} = qk(tl, . .. I tk )dt I ... dtk

for t 1 , , tk distinct. The k-th factorial cumulant of N (t) is now

t t
f ... f qk(t' 1', tk )dt I ... dtk
0 0

In the case of a Poisson process, the product densities will be given by

Pk(t1, "'',tk)=p (t1) ... P(tk)

with p (t) the intensity of the process and the cumulant densities will van-

ish fork > 1.

As an example of the use of moments to derive an alternate limit

theorem, suppose one has N I(), " - - , Nn (') i.i.d.copies of a point process

N (.). Suppose they are superposed and rescaled to form the point process

Mn (t) = N,( t) + .. + Nn (t)

n n
The k-th factorial cumulant of this process is

tin tin
f f' n qk (t 1, , tk )dt I ... dtk

0 0
n n(--)k qk(0, ' ,0)

n
for large n, assuming continuity at 0. This cumulant tends to tq (O) for

k = I and to 0 for k > I and in consquence one has a Poisson limit for

the variate Mn (t ).

5. Extensions. The preceding results and definitions extend quite

directly to the cases of: a spatial process X (x,y), a marked point process
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Mi 5(t-tj1 ), a hybrid process X (tj) and a line process, for example.
J

6. An example. In this section second-order moments and cumulants

are emp!oyed to infer the causal connections amongst some contemporane-

ous point processes.

Consider the stationary bivariate point process (M, N) with points tk

and yt respectively. In what follows an estimate of the product density of

order 2 will be needed. The parameter is defined via

PMN(u ) dudt = E {dM (t +u )dN (t)}

= Prob{dM(t+u) = 1, dN(t) = 1)
This last suggests basing an estimate on the count

h
# {I tk - - u I < k) (8)

2
for some small binwidth h. Details are given in Brillinger (1976). One

result is that it appears more pertinent to graph the square root of the esti-

mate. In the case that the processes M and N are independent, one will

have PMN (u) = PMPN, which possibility may be examined via the statistic

(8).

The suggested estimate will be illustrated with some neurophysiologi-

cal data. Concern in the experiment was with auditory paths in the brain

of the cat. To collect data, microelectrodes were inserted with location

tuned to sound response. Data was recorded when the neurons were firing

spontaneously. Also responses were evoked experimentally by 200 msec.

noise bursts, that were applied every 1000 msec., via speakers inserted in

the ears. The firing tirmes of 8 neurons were recorded. Figure 1 provides

the data itself for 4 selected cells, 2 in the case with stimulation, 2 when

the firing is spontaneous. Each horizontal line plots firings as a function

116



of time since stimulus initiation in a 1000 msec. time period. The

stimulus was applied 505 times in these examples. In the stimulated case

one notices vertical darkening corresponding to excess firing just after the

stimulus has been applied. Neurophysiologists speak of locking. In the

spontaneous case no locking is apparent. There is some evidence of non-

stationarity in this case.

Figure 2 provides the square root of a multiple of (8). The horizontal

dashed lines are ±2 standard errors about a honzontal line corresponding

to independence in the stationary case. One infers that the cell pairs are

associated in each case. However in the stimulated case one has to wonder

if the apparent association of units 6 and 7 is not due to the fact that the

cells are being stimulated at the same times.

Fourier techniques provide one means to address this concern. Write

1TI~\-i .Xtk
aAIIA.) e- e r

k
dTN(X.) = X" e-i'~

for the data0<•:k,y1 <T. For X 0one has

E T{A(X)dT(k) 2rtT fMN(X)

with fMN(G) the cross-spectrum given by

fMN(W) = -L e- qMN(U ) du

A useful quantity for measuring the association of M and N may now be

defined. It is the coherence,

IRMN (W)I2 = lf ( A(Q)12 / fMM((X)fNN(k)

with the interpretation

lim Icorr {dT(X), dT(X)} 12

It satisfies 0 < I RMN (W) 2 < 1, with greater association corresponding to
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values nearer 1. Figure 3 provides coherence estimates for the cell pairs

of Figure 2. This evidence of association is in accord with that of Figure

2. The dashed horizontal line provides the 95% point of the null distribu-

tion of the coherence estimate.

To return to the driving question of how to "remove" the effects of

the stimulus, one can consider the partial coherence. This has the interpre-

tation

lim Icorr{dT -Td, dT - 141 2

T---o

with a, f3 regression coefficients and S referring to the process of stimulus

times. Suppressing the dependence on X the partial coherence is given by

I RMN Is 12 where

RMN - RMSRSN

S/Il-IRMs 12 )(1-IRNS 12)
Figure 4 provides the estimated partial coherence c ' neurons 6 and 7 in

the stimulated case. The level apparent in the top graph of Figure 3 has

fallen off substantially suggesting that the assoLiation e-.'denced in Figures

2 and 3 is due to the stimulus.

For interests sake Figure 5 provides the coherence estimate for neu-

rons 3 and 4 in the case of applied stimulation. One might wonder if they

would become more strongly associated in the presence of stimulation.

The results do not suggest that this has happened.

7. Conclusions. In summary, moments and cumulants may be

employed to develop approximations to distributions, approximations such

as the normal or the Poisson. They may be employed in system

identification. They may be used to infer the "wiring" diagram of a col-

lection of interacting point processes.
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The approach presented is nonparametric, not based on special sto-

chastic processes described by finite dimensional parameters. Brillinger

(1991) provides a variety of references concerning the work pre 1980 on

higher moments and spectra.
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Figure Legends

Figure 1. Rastor plot of the firing times of 4 neurons in successive 1000

msec. periods. There are 505 horizontal lines of firing times.

Figure 2. The square root of a multiple of the quantity (6). Were the

processes independent and stationary then about 5% of the values should

lie outside the band defined by the two horizontal dashed lines.

Figure 3. Estimated coherences of cells 6 and 7 in the stimulated case and

3 and 4 when the firing is spontaneous.

Figure 4. Estimated partial coherence of cells 6 and 7 "removing" the

effect of the stimulus.

Figure 5. The estimated coherence of cells 3 and 4 in the case of stimula-

tion.
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Units 6&7, partial coherence
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Stimulated units 3&4, coherence
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Abstract
Coitsil,'r finite mixture models of thie form g(x; Q) = f f(x; O)dQ(O)

wl,.r. f i- a param•etric densitv and Q is a discrete probability mea-
siure. An important and difficult statistical problem concerns the de-
teriiuiiati(n) of thie number of support points (usually known as com-
ponents) of (2 from a sample of observations from g. For an important
cl.,is of exponential family models we have the following result: if P
has inr,- thlan p components, and Q is an appropriately chosen p
Coin;,1,.., pjproxiiiiation of P then g(x; P) - g(x; Q) demonstrates a

prescl . >izn change be,.havior, as does the corresponding difference
ill the ti-rrii,utin functions. These strong structural properties have
imdieati,:(s for diagnostic plots for the number of components in a
fintite' mixt ure.

I Introduction

Coisi,lcr a f,,inilk (Af uni variate probability densities f(x; 0), with respect to

ý,1u, (T filnite, n,'rIýrc ( 1-(./, parameterizcd by 0 E Q. Frequently, interest

"T!,., a•tl•i , : s~ •,U,' Lv NSF grants DMS-9106S95 to Lindsay and D.MS-
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lies in mixtures of such densities. The random variable X is said to have a

mixture distribution G(-. Q) if X has density

g(x;Q) = f (x;O)dQ(0), (1)

and the mixing -distribution Q is a probability measure on Ql. If Q has a

finite number of support points v v= u(Q) then we say Q is a finite mixing

distribution and we write Q,, = E 376(0,) with 9 k,...,0, being the support

points (often called components) and rl,... ,r, being the weights.

A problem of longstanding interest in such models is inference on the

unknown value of v(Q). At the simplest level, this is the problem of deter-

mining if v' equals 1. the o, r mponent model, or is greater than 1, the

multicomponent model. -1 .ked (1980) presented important results for this

problem when the coaponent densities f(x; 9) are one parameter exponential

family. We ext-.id his results in two directions, generalizing to the discrim-

ination between v = p versus v > p. and moving beyond the one parameter

exponential fainily to the normal mixture model in which each component

has a differcnt mean, but the same unknown variance.

Here we summarize Shaked's sign crossings results. Suppose we wish to

contrast a inulticomuponent model y(.r; Q) with a plausible one component

modýel f(.r: 0). Choose 9 = 0* for the one component model so that the

observed variable X has the same mean under both densities:

J (ra(x: Q) d;(x) f (.: a-))

Our notati,,n f.,r this last equation will be E[.V;Q] = E[X 0"]. Shaked

sh,,we.l tha't ;,(.r:I0 - f(.r: i) has exactly two sign changes. in the order
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+.-.. a,, x traverses the sample space. That is, g(x; Q) has heavier tails

thax, 1 ( 1 : a- ). NIl reover. the difference in distribution functions G(x; Q) -

F(.1- 0N) has exac tlv one sign change, in the oider (+,-).

We extend his results as follows: let P. the nominal true mixing distribu-

tion. satisfy ,(P) > p; choose Q•,, a candidate p-point probability measure,

such that it s'atisfies

Sr] = F[,\k:01,1, k = 0, 1 .... 2p -1 2

(In Section 2 we show how to solve for Qp.) Then, in Theorem 3.2, we show

that Q'(., P)-,( , has ,racthi 2 1, sign changes in the order (+, -... -

unless it is it'i uticallv zero (the case of nonidentifiable P). An exact sign

change r,'sult f,,r ie. difft,rncuce li 1,tiritiution functions is also given in Sec-

ti,n 3. It Scn tiii I. th,,ec r.suIlts are extended to normal densities with

unlkno•Wn va llllt •ic'.

B1'efre Vi , lily tol the inatlhicinitical verification of these results, we

, t fLw il, f, f,,iil tsi,,t )I n thi il ipoteintial application. In Figure 1, we

,, ( ), \/(.r, P) for the case when jfx; ) is Poisson, P

piuts mnas, 1 t, Ih at (1.3 and 5). and(I is constructed to niatch moments

a p, i e , in (2). Wte ,iot thle (lear tilimo lalitv of this function, in constrast

to t liet i ii to labitv of th,l density q(.1; P) (Figure 2).

Shal ,,n, xp,tritl that hi, 'iui chang~e results could be used for di-

a•,ti, ,~ L,' , lt,:i:',, if th1, datla wr fromn a mixture of specified

xii,,. litil fniilv ,.1itii's rathi'r tlhan a one co~mponent model. These

i,,, ,,, f;:' •tl , 1 ,L,, . i M Lii:i',alv and Po(eder (1992). W hen interest

, ii• ;-,,--<:: t,, xtiml, r ,f, 1 •l4 t - , s in a finite mixture, the oscillation
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results obtaincd in this article have clear implications for diagnostics plots.

In a companion paper these results are used to develop diagnostic plots for

the case of normal mean mixtures with unknown variance (Roeder 1992).

2 Background

2.1 The models u, dter investigation

"W\ v will ,w interested in component densities f(x; 9) where both x and 9 have

ranaege• ill the ral numbers, say x G T C R and 0 E [I, u] C Q. Furthermore,

-. .) sati,fii, ro,;ilarity conditions which will be expounded in this subsec-

ti,,1 . Al.th,1 gh the most important application of the results to follow is the

(oL(' parainct,,:r cxponential family, the results readily extend to other cases

of litterest for which we need the following terminology.

.\ rta, functi,,n of two variables. K(r, 0), ranging over linearly ordered sets

T and !1 i, said t, hb tot,,•2y positivc (TP) if certain determinantal inequalities

lh,11 ( Iailin 1938. 'p 11. 15). For instance, the functions exp(9x) and I(x <

P) are TP. Il l týlition. many density functions occuring in statistical theory

are TP. For exaniple. the one parameter exponential family with density

function IK( r: P) = exp{[x - &(9)}. Other examples include the noncentral-t

and noincent .1- \2 densities. In fact. all of the densities mentioned above are

strictly TP (STP: Iarlin 1968. p. 12). For a more extensive list, see Karlin

19G;8. p. 117). We will say that f(x: 0) is an STP-model if f(x; P) is strictly

tot ,tdiv pir,,tivx ill Xa Ma 0.
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2.2 Background on moments and exponential fami-
lies

In order to apply our results in a particular model we need to establish two

important structural features for the component densities f(x; 0). Our first

requirement is as follows: suppose that P is a mixing distribution with p

or more support points. Then we need to be able to construct a p-point

distribution Qp such that the first 2p - 1 moments of 9(x; P) and g(x; Qp)

match, satisfying (2). Fortunately, there exists an important class of expo-

nential families (the quadratic variance class) in which Qp satisfying (2) can

be shown to exist. This class includes the normal, gamma, Poisson and bi-

nomial distributions. The following is a brief review of techniques found in

Lin(lsay (1989).

In the quadratic variance family of exponential family models (Morris

1983). for each k. there exists a polynomial of degree k, call it ýk(x), such

that

I=k(X)f(X:0)d-( (X -(L (3)

for meian value parameter p. The choice of po is arbitrary so we set it to

zero. For example, in the Poisson with mean p. E[X] = 'U, E[X(X 1)]

J. E[X(.V - 1)(-Y - 2)] = p3' and so forth. In addition, a classical moment

result indicates that for a given (listribution P with no fewer than p-points

of support. therc exists a unique distribution Q, with exactly p-points of

support such tl.at

Jt dk(/p) J kpdP(/1). k . 2p - 1. (4)

Thus integratiig both sides c-,f (3) with respect to dQp(Ii) and dP(p). and
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using (4) yields

E[,k(X); P] = E[k(X); Q], k= 1,...,2p - 1. (5)

Finally, the map taking (1, x,... I, 2 P-1 ) ( (X(), 6(x),. . . ,pI(x)) in-

vertible, so (5) implies (2).

More details on solving (5) for Qp are given in Lindsay (1989). The solu-

tions can be obtained algebraically for p = 2. For arbitrary p, the problem

involves solving a degree p polynomial for its p real roots.

3 One parameter models

In this section we obtain sign change results for one parameter models. The

following notation (Karlin 1968, p. 20) will be used. Let a(x) be defined on

I where I is a subset of the real line. The number of sign changes of a in I

is defined by

S-(a) = sup S-[a(xi),... , a(,,)] (6)

where S-(y, ...., Y,,,) is the number of sign changes of the indicated sequence,

zero terms being discarded, and the supremum is extended over all sets

X1 < X2 < ... < Xm (x, j E) r < oc. (7)

We assume throughout that f(x; 9) is an STP kernel and that P and

Q, satisfy (2). The following notation will be used throughout this section:

• -= 9g(xr: P). ,, -_ 9(x; Q,), G1 = G(x; P) and G2  C G(x; Qp).

Remark In the fllowing result we will give exact sign change results for

91 - 2 with the proviso "the difference Ym - g2 is not identically zero". If
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such an equality in densities occurs, it is clear that there is an identifiability

problem: both P and Qp are gencrating the same distribution. The results of

Lindsay and Roeder (1992) can be used to determine exactly when this will

occur. If the sample space is infinite, it will not occur. If the sample space has

A points, then p-point distributions Qp are identifiable when p _• (N - 1)/2,

and so 91 - 9g cannot be identically zero. If both P and Qp have more than

(.V - 1)/2 points, then g9 - g2 cannot have exactly 2 p sign changes, since we

can have at most A' - 1 sign changes as we traverse the sample space. Thus

our result proves that P and Qp generate the same density. U

Lemma 3.1 Provided g1 - g2, is not identically zero, S(91- 92) <_ 2p.

Proof Dcfine the measure d\(O) by

dX(0) = d(P + Q,,)(0).

Let

rP((o}/[P({o1) + QpU9})1 if 0 G {91'. . .

) 1 else,

and

q,.({o}+!Qp({o}) 0it E {E0 ... ,}
q"(H) { { {) else-

Then p" anldI q" are versions of the Radon-Nikodvm derivatives dP/d.V and

, o t, 1h:t 9 -q =2 f f(.r: 0)[p,(9) - q(0) d(P + W )(9)

We now aipply Theorem 3.1 (b) of Karlin (1968). noting that p'(9) - q*(O)

equal•s oine excceIt p atilly a the suipport of OPp. where it can be negative.

I,"11 , it 11111,)rg,,s a maxiu m i ,f 2 p .ign cianges. IKarlin s result then
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implies that integrati on with respect to the STP kernel f(x; 0) will result in

a function. q1 - 9, with no more sign changes in x than p*(O) - q*(O) has

in 9 relative to d\. This establishes an upper bound of 2p sign changes in

91 9- ,

Theorem 3.2 Provided g, - 92 is not identically zero, S-(gi - g:) = 2p,

with sign chiangcs in the order (+, -,. .. , -,+).

Proof From Lemma 1, we obtain an upper bound on the number of sign

changes of 2p,. Because f x'(91 - 92 )((x)dv(x) = 0, for k = 1,.. ., 2p - 1, any

polynonial A(.,") of degree < 2p - 1 satisfies

IA(x)(g, - g2)(x)d-'ý(x) = 0.

Suppose S-(gi - 9-2) - 2p - 1. Then we can construct a polynomial A(x)

that matches (-/ - Y2 in sign (i.e.. it has single roots exactly at the roots of

.yj - p2). It follows that A(x)(gl - 92) > 0, and since it has zero integral

it mnni be Yor(; except for a set of -.-measure zero. Hence either g9 = g2, or

!) - g" has 2, sig i changes.

Remark As is clear from the proof for this result, our oscillation results still

hll1 if w,. r,1a1c . in (2) with any system of functions Ok(x), such as xf-,

provih(1,l that one can construct a polynomial A(x) = ' akak(x) which has

any pJspeeifi.,l set of 2j - I zeroes. Such an approach could be useful in

imiprvillg on thr rolustness of the sample moments in applications by using

nI Vaii I I's sh as (tk(.r) = X kr-. The next theorem, however, uses

thil t ,' ,i f.,rii ,,f .x•. U
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Theorem 3.3 Provided G,-G 2 is not identically zero, S-(G1 - G2 ) = 2p-1,

with sign changes in the order (+,-,...,+,-). The roots occur between the

roots of gl - g2 .

Proof An upper bound is obtained on the number of sign changes by ap-

pealing to the sign change behavior of g1 - g2. The function G1 - G2 is
increasing on the intervals [a, b] where g1 - g > 0:

G1 (b) - G2 (b) - (Ge(a) - G2(a)) = I I[a < x < b] (g, - g2 )(x) d-y(x) > 0.

From this it follows that G, - G2 has at most one crossing in each interval

where g, - g2 is constant in sign. but has none in the first or last interval.

Hence S-(GI - G 2 ) :5 2p - 1. Integration by parts gives

0 = I xd(G, - G2 )(x) =JG2 - Gl](x)dx,

and more generally

0 =Jxk d(G1 - G,)(x) =JIXk1 [G 2 - G, ] (x) dx,

up to k = 2p - 1. Now, follow the proof of Theorem 3.2. If G2 - G, had

2p - 2 or fewer sign changes, a polynomial A(x) of degree 2p - 2 could be

constructed with matching signs. Hence 4(x)[G2 - G _j(x) Ž 0, but has zero

integral. The result follows. .

For continuous ., a diagnostic plot based on a nonparaxr-etric empirical

analog of G1 - G, can be constructed directly. Let F,. the empirical distribu-

tion function. be an estimate of the alleged distribution G1 and let C2 be an

estimate of G, constructed by using the method of moments estimates of the
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p-component model. Naturally, F, and G2 have 2p - 1 moments in common.

It follows that if F, - G2 has the appropriate sign change behavior, then

the data provide some support for using more than p components. On the

other hand, if a p-point mixture is the correct model, then the asymptotic

properties of F,, - d2 can be obtained from empirical process theory.

4 Normal Mean Mixtures with Unspecified Variance

In this section we consider a mixture model of great interest - the normal

mean mixture. \Ve use the following notation: let f((x; p, r) denote the den-

sity of a .V(N. r) random variable and let g(X; Q, r)= ff(X; ti, r) dQ(y) de-

note a mixture of normals with corresponding distribution function G(x; Q, r).

If -were known. then this is just a special case of the previous section: how-

ever, in racti:(%. - will typically be unknown and hence we treat it as a free

parameter. In this section we extend our results to this case. We first present

an existence theorcm, due to Lindsay (1989), which extends the classic mo-

mi'nt resultp•e ,sented in Section 2 to normal mixtures.

Theorem -1.1 If Q is a distribution with more than p-points, then there

exist_ a WlaiqIuc p-point distribution Qp and variance r7 > r such that

ffdG(X:Qpýrp) JrkdG(x;Q, -) for k 0, 1, .... 2p. (8)

Proof Whil, this is not explicitly stated in Lindsay (1989). it is a conse-

qiimn,((, of L, mmnina 5A awl Theorem 5C. In the latter. replace the empirical

mni,-,iiitt with th,, mo-mnt, of X under G(.: Q. 7). U
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Theorem 4.2 If (Q,, rp) satisfies (8) for Q = Qp+1, a p + 1-point distribu-

tion, then

g(x; Q,1, r) - g(x; Qp, TP)

has exactly 2p + 2 sign changes, occuring in the order (-,+..., +,-).

Proof Since r,> 7, we can represent the above difference as

g(X; Q, r) - g(X; QP', 7)

where Q• is the convolution of Qp with a normal distribution with mean zero

and variance 7, - 7. By the same argument as in Lemma 1, this means there

are a maxiimum of 2p + 2 sign changes. The polynomial argument used in

the proof of Theorem 3.2 can now be used together with (8) to show that

there are at least 2p + 1 sign changes. Moreover, since Q; has more mass

in the tails than the discrete Qp~l, the difference g(x; Q, r) - g(x; Q;, ) will

have a negative sign in both tails, and so must have an even number of sign

changes, hence 2p + 2. U

Theorem -4.3 G(x: Q, 7) - G(x; Qp. 7p) has exactly 2p + 1 sign changes, in

the ordcr (-. +.... +).

Proof A similar argument to Theorem 3.3. U

Graphical techniques, such as the normal scores plot (Harding 1948,

Cassie 1954) and the modified percentile plot (F'owlkes 1979) have played

an important role in identifying whether data follows a mixture of two nor-

meal distributions. The geometric characterizations obtained herein extend

the arsenal (of 1otential diagnostic plots for normal mixtures.
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5 Discussion

Our results above, in the normal case, indicate that

g(x; Q2, T) - g(X; ,2)

has 4 sign changes in the order (-,+,-, +,-) provided M is the mean of

Q2 and oa2 = Var(X) = r + Var(Q 2). For this case a supplementary result

is available from Roeder (1992). If we instead examine the ratio R(x) =

9(x: Q2, r)/g(X: ;1, a 2 ), we obtain a function proportional to a bimodal normal

density. By combining the two results we can see that R(x) is bimodal and

that both modes are greater than 1.

In the norminal model, with ,.l - 1/2, the density g(X:Q 2 ,r) is

bimodal if and only if the two separate supports ji 1 and A 2 satisfy Ipi -

P9 > 27 (f,,lrrtson and Fryer 1969). Thus the ratio function is much more

sensitive tu the cx~stence of two support points than is the density itself.

This sensitivity continues to exist even for very small support weights r.
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Abstract

The normal distribution has long been the usual model for the analysis of multivariate data.

Moment and probability calculations for the multivariate normal are used in applications such

as the construction of confidence sets, the assessment of error rates in signal processing, and the

construction of optimal quantizers. Recently, the family of elliptically contoured distributions,

which includes the normal, has been extensively studied. In this paper, we discuss moment and

probability calculations for this broader class, paying particular attention to the approximation

of tail probabilities.
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1 Introduction

The normal distribution has long been the usual model for the analysis of multivariate

data. Moment and probability calculations for the multivariate normal have therefore been well

studied for various cases of interest. In statistics, a common application of such quantities is

the construction of confidence sets for parameters of the normal distribution. Other examples

include the assessment of error rate probabilities in signal processing, the construction of optimal

,,r , a Gaussian process, and the computation of a high order correlation coefficient of

the outputs from a zero-memory non-linear device with Gaussian inputs.

The general problem is still intractable, owing to the great difficulty in evaluating high

dimensional integrals, but advances in computing technology and recent research has yielded

innovative Monte Carlo and numerical integration techniques. These advances have widened

the scope of such investigations to include other multivariate distributions. For instance, there

are the elliptically contoured distributions and the multivariate Pearson family of distributions,

both of which include the multivariate normal. Elliptically contoured distributions, in particular,

have been extensively developed: see the collection of papers about them that was recently edited

by Anderson and Fang [2].

In this paper, we study the computation of probabilities and moments for certain elliptically

contoured distributions, and discuss their applications. There are, of course, many classes of

events whose probabilities are of interest, and many functions whose expectations are of interest.

Our focus will be on the evaluation of tail probabilities, and on methods for computing product

moments, and other non-linear functions of the components of the random vector. In Section 2,

we introduce elliptically contoured distributions, and describe their properties. Historically, mo-

ment methods have been associated with Pearson's family of distributions. Since some elliptically

contoured distributions are also natural multivariate versions of some of Pearson's distributions,

143



we briefly describe this connection also. In Section 3, we discuss applications of tail probabili-

ties, and describe methods for approximating them accurately. These methods include Monte

Carlo with importance sampling, and asymptotic approximations that generalize Mills' ratio for

the normal distribution. In Section 4, we turn to moment calculations for elliptically contoured

distributions using one of three tools: the characteristic function, a stochastic representation,

and a certain partial differential equation satisfied by sufficiently smooth elliptically contoured

densities.

2 Elliptically Contoured Distributions and Pearson Families

A p-dimensional vector X has an elliptically contoured distribution if there is a non-negative

definite matrix E = (ai,) such that the characteristic function of X is f(t) = e"t'90b(t'Et), where

'0 is a real-valued function on R+ = [O,oo). Then X has the stochastic representation

X = Ai + T21/ 2 UP, (1)

where 4 is the center of symmetry, the radial part r is a non-negative random variable, and

Up is uniformly distributed on 11p, the surface of the unit sphere in p-dimensions; r and Up are

independent. The matrix E 1/2 is a square root of E: for computations, it is convenient to take

Ei/2 to be the lower triangular matrix from the Cholesky decomposition, or the non-negative

definite symmetric square root derived from the spectral representation of E. When X has a

density f, it is of the form

f(X; A, E) =11-2 g(Q), (2)

where Q = Q(x,tu. E) = (x - [)'E-l(x - 4), g IR+ - R+,

ap, TP-lg(r2)dr= 1, (3)
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and ap is the area of Qf; the level curves of f are ellipses determined by {x : Q = c}. In this case,

r has the density h,(r) = aprP- 1 g(r2). Examples of elliptically contoured distribut;..,w¢ ih~i i:e

the normal, for which g(r) = O(r) = e-/ 2, and the p-variate t distribution with V degrees of

freedom, for which

r((p + v)/2) (1 + QI()-(4+))/2.
- ()rv )P/2r(v/2)

Another example is due to Iyengar [12] (see also [15]):

fpk(; ,E, 1 :r(p/2) jq,•:•-1/1 (Q/•7)k exp(-Q/q). (5)
Lr(k + p/ 2 )

where il > 0 and k > 0. When k = 0, (5) yields the normal distribution. For the bivariate

case, Kotz [20] has also studied this family. The uniform distribution on QP is yet another

example which will be used for moment calculations below; it does not have a density. For

further discussion of elliptically contoured distributions, see Anderson and Fang 12], Das Gupta,

et al. [8], and Cambanis, et al. [5].

In one dimension, Pearson's family of distributions is defined by the following differential

equation satisfied by their densities (see Cram6r [7]):

d log f(x) x + a
- b~~~x~(6)dx bo + bix + b2x2

Within this family, the first four moments determine the distribution. Several types of Pearson

distributions (depending on a, b0 ,bl, and b2) have been identified. In addition to the normal,

the common types are the beta (Type II), gamma (Type III), and Student's t (Type VII). The

elliptically contoured distributions given by (4), and (5) are multivariate versions of Types VII

and Ill. respectively. For example, when R = I and IL = 0, the density for the p-variate t

distribution with v degrees of freedom, satisfies the following differential equation:

V log fp.,,(X; O, I) (- + v)x (7)
14 + 5'

1.45



However, there is an important difference betweeni (4) and (5). For (5), if Y = 0 and k > 0, then

the density at the origin is 0, and the modal value, or peak, of the density occurs on the surface

of the ellipsoid {x : x'E-lx = kqr}. On the other hand, the density in (4) has its peak at the

origin, and it is unimodal. Several results that apply to the normal and (4) do not generalize to

(5); see Tong [34] for further details.

3 Tail Probabilities

If X is a random variable with density f and cumulative distribution function F, the tail

probability of X refers to

0=1- F(a) = j f(x) dx (8)

for large values of a. In many statistical applications, such as hypothesis testing, the tail

probability of interest is around 0.05. For such cases, the computation of, say, p-values is usually

straightforward. In other applications, especially in engineering, much smaller probabilities are

of interest. For instance, in signal processing, the tail probability arises as the error rate of

a complex communications system (Scharf [30], Wessel, et al. [35]); and in reliability theory,

it arises as the failure rate of a system component (Lawless [221). Often such systems have

redundancies built into them, so that their error or failure rates are very low. A simple model

of failure regards X as an overall index of stress, and considers very large values of the failure

threshold, a.

In this formulation of the problem, two difficulties arise. First, the usual quadrature rules

and Monte Carlo methods for evaluating 0 are not sufficiently accurate, so specialized methods

are needed for evaluating tail probabilities. We will turn to some of these methods below. Next,

the basis for the choice of probabilisitic model (that is, F) is tenuous. This is because for a

complex system, the theoretical derivation of F based on individual component characteristics is
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intractable; also, data to estimate 0 is sparse since the event of interest is rare. While information

about the central region (near the mean or median) of F is usually available, the tail behavior

is usually unknown, so extrapolation is necessary. One way of addressing this problem is to

consider a wide range of plausible models for the tail behavior to derive a range of values for the

tail probability. For one example of just such an approach, see Lavine [21], who studied shuttle

O-ring data.

Multivariate versions of this problem arise in similar fashion: for instance, a system with

two components may fail when each component's stress exceeds its respective threshold, leading

to the failure probability P(X 1 >_ a,, X2 _ a2). A number of new difficulties also arise. First,

multiple integration is still a hard problem in general, so with few exceptions multivariate tail

probabilities are not well studied. Also, a tail region can take on many shapes, for example,

{x : x, > a,,x 2 > a 2 }, {x : aix, + a 2 x 2 > a}, or {x : x2 + x2 > a2 }. Below, we restrict

attention to convex regions that are far from the center of the distribution, eliminating the last

example from consideration.

There are two main sources of error in assessing tail probabilities. The first is numerical:

it is generally hard to evaluate a small quantity with small relative error. For a deterministic

method, if 0 is an approximation to 0, the relative error is (0- 0)/0. For a Monte Carlo method,

the coefficient of variation (the ratio of the standard deviation to the mean of an estimator) is

a measure of the relative error. If the unbiased estimator b," of 0 is an average of n independent

replicates, its squared coefficient of variation (cv 2) is

_v2O)- var(Ok) = 1[E )]()
02 - n 02 . (9)

Below, we study the use of Monte Carlo with importance sampling to derive estimators for

which the cv 2 is small. If B is a tail region, and f is the density, importance sampling uses the
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expression

0 f (x) g•(gx)dx l(x)g(x)dx, (10)

for some "sampling density" g to get an unbiased estimator which is the average of n independent

replicates (over the set B) of the likelihood ratio 1(Y), where Y has density g. We seek those g

for which the cv 2 is bounded as the tail probability tends to zero.

The second source of error is statistical: the uncertainty in the choice of the model F makes

the tail probability estimate uncertain, even if there were no numerical error. There are several

ways to address this issue. One is to introduce a plausible family of models, and compute a

range of tail probabilities for that family. Another is to follow the approach of Johnstone [19],

for the Pearson family. He estimates the parameters of the family from available data, and

then provides an estimate of a given quantile with its standard error. Yet another approach is

Bayesian: first model the uncertainty in F by putting a prior on it, and then use available data

to compute the posterior distribution of the tail probability.

We start with the univariate case to motivate the multivariate case below. If X has density

f, l'H6pital's rule says that with suitable regularity, the asymptotic behavior of P(X > a)/f(a)

is the same as that of r(a) = -f(a)/f'(a). The regularity conditions are that f'(t) j 0 for all

sufficiently large t, and that the ratio r(a) have a limit as a --+ oo; these conditions are met in

many cases of interest. Writing

j f(x)dx = r(a)f(a) - r(:)+ a)dxa (11)

it is clear that (under the same regularity conditions) the last integral in (11) approaches 1 as

a - oc; thus, it is bounded away from 0, and estimating it with good relative accuracy can

be done using importance sampling. This heuristic has been extended by Gray and Wang [11],

where the generalized jackknife is used for evaluating univariate tail probabilities. The method

suggested below may be regarded as a Monte Carlo analog of that procedure.
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For the normal distribution, (11) yields

O(x)dx = O(a)__ - aO(x +a)dx = (a_) eX 2/2ae_-azdx (12)

a0a JO (a)a

which suggests the estimator

O =(a) eT 2 /2, (13)
a

where T has the exponential density, ae-al for t > 0. Now, let $(x) and O(x) denote the

univariate standard normal distribution and density functions, respectively, and let

M(x) = 4(-x) = 1 et2/2XeXtdt (14)
O(X) ý- X Jo

denote Mills' ratio. Since M is a convex, decreasing function (Iyengar [13]), the following

inequalities are easy to prove:

l+x 2 <M(x)< - for x>0. (15)

These inequalities, in turn, imply that

cv2(t) 2 M(a/V25) 2
M(a)2av'2 -1 (16)

as a - oo, so that the cv2 tends to zero as a increases. This estimator results from the sampling

density g(t) = ae-a(tIa) for t > a. The deterministic analog of this result is that

O(a)/a - (-a) 1 1 1
0 < 4(-a) - aM(a) Ta2  (17)

so that the relative error in approximating $(-a) by 0(a)/a decreases to zero as a increases.

The phenomenon observed in (16) is quite general: for a wide class of problems, the coefficient

of variation actually tends to zero, hence the relative accuracy improves as the threshold a

increases. In addition, this method is feasible since the calculation of r(a) depends on the

differentiation of the density rather than its integration; since the behavior of the tail probability
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is already captured by r(a)f(a), the evaluation of the remaining integral by Monte Carlo provides

a correction term. In practice, either (11) or one of the following two expressions for 0 is also

useful:

0 = r(a)f(a) f(a + x/a)d = )00 af(a + ax)d
Jo ar(a)f(a) a j r(a)f(a)

Two other examples illustrate this technique. The first involves the generalized inverse

Gaussian distribution, whose density is

f (t I a,0, A) = 2 (a,/O):12 _0 exp [-(at + 31t) for t > 0, (19)

where KA is the modified Bessel function of the third kind with index A. The parameter space

is the union of the following three sets: {a > 0,/3 > 0}, {a = 0,13 > 0, A < 0}, and {a > 0, 3 =

0, A > 0}. This family includes the gamma, the inverse Gaussian, the hyperbola distribution,

and their reciprocals, in the sense that if X has density f(t I a,L3, A), then X-' has density

f(t 1 3, a, -A). For the case a > 0, 3 > 0, this method yields the estimator

- 2 f(a I a,0,A)eO/ 2 a(l + 2T)A1_exp (21 3 (0)
Q aa 2 (aa+2T) '

for sufficiently large a, where T has a standard exponential density. The second example is the

t distribution with k degrees of freedom, with density fk(x) proportional to (1 + X2 /k)-(k+1)/ 2 ,

for which the estimator is

a~fk (a)[(k + a ] (k+1)/2 (21)

where Y has the Pareto density k/yk+1 for y > 1. In both cases, the cv2 decreases to zero as

a - oc. Detailed proofs of these and related results are given in [17].

We now turn to the multivariate case. In 1962, Slepian [32] proved the following inequality.

Let X - Np(0, Y = (aiu)) and Y - Np(O,T = (rij)) with aij > rij and Ori = rii; then for any

vector a, P(X > a) > P(Y > a), where x > a means that xi >_ ai for all i. Slepian derived
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this result using Plackett's identity (see Section 4 below) in a study of one-sided boundary

crossing problems for Gaussian processes. Since Slepian proved his inequality, his result has

been generalized in a number of ways. For instance, the inequality holds for all elliptically

contoured distributions: see Das Gupta, et al. [8] and Tong [34] for such results.

When aoij > 0 for all i and j, the inequality PE(X > a) Ž PI(X > a) yields a lower bound

which can be easily computed for the normal, since then it is a product of univariate normal

probabilities. However, this lower bound often gives a poor approximation (see Iyengar [14]), so

that Slepian's inequality is more useful for theoretical investigations. Thus, in this section, we

describe alternative methods that provide good approximations.

Suppose that X is a p-variate vector which has an elliptically contoured distribution with

density IE 1- g(x'E-lx); further, let term "tail region" refer to a closed convex region B

that is far from 0 (of course, B should have non-empty interior, else the probability will be

zero). If E = L'L is the Cholesky decomposition of E, then Z = L-'X has the density

f(z) = f(z;O,I) = g(z'z), and P(X E B) = P(Z E A = L-1B). Since A is closed and

convex, it contains a unique point, a, that is closest to the origin: tal_<IzI, for z E A, and A is

contained in the half plane {z : z'a > a'a}. Since Z has a spherically symmetric distribution,

A can be rotated so that a = tel, where el is the unit vector in the z, direction, and r =Ial.

Note that r = r(A) depends upon the set A; for notational convenience, this dependence will be

suppressed. Next, if /3 = La, then/3 minimizes the Mahalanobis distance, (x'E- 1x) 1/2 , of points

in B to the origin; also, B is contained in the half plane {x : x'E2-1/3 ! /3'--/3}. Of course,

the problem of finding/3 is a quadratic programming problem which can be solved using known

techniques. For any set A, matrix D, and vector c, let DA + c denote the set, {Dx + c : x E A}.

To estimate 0 = P(Z E A), ordinary Monte Carlo averages n independent replicates of

[(Z E A), where I is an indicator function. This estimator's variance is (0 - 02)/n. An
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alternative approach is to use f(z - a) as a sampling function (Wessel, et al. [35] refer to this

as improved importance sampling). The expression

0= f (Z1(z) . )d = f(Z+a f(z ) z(2

IA fAZ - a)f~ G IA-cr A(Z)(2

suggests the unbiased estimator

8_f(Z + a)I(Z EA a). (23)

f1(Z)

If g is a decreasing function - that is, f is unimodal, as is the case with the p-variate normal

or t, but not the family given in (5) - then f(z) <_ f(z - a) for z E A, and

E(0 2 ) jf (-Z)) f(z)dz < 0 (24)

so that B has a smaller variance (and smaller cv 2) than ordinary Monte Carlo. However, it can

be shown that for several cases (the normal and the t), the cv 2 tends to inhnity as a -- oo (see

[17]). Thus, we turn to multivariate analogs of the method described in (12) above.

Although a direct generalization of (12) is not available, the analog is to write A0 = A - a,

and

0 = (z)dz= f(a) f(Z + a) dz, (25)

JA IAO f(a)

and to manipulate the ratio f(z + a)/f (a) to derive an estimator that has bounded cv 2 as the

region A moves outward to infinity. Just as in the one-dimensional case, there is no generic

method that will work for all g; and unlike the one-dimensional case, the shape of A (or equiv-

alently the shape of B and the dependence among the random variables as given by E) plays

an important role in the choice of sampling function. We now sketch the details for the normal

and t distributions.

For the normal with density Op(z) = Cp(z; 0, I), (25) becomes

Oo = + a) (2r(=)2Pa 2.o=P(Ce) / OP(W + Id( l ,, O lal e-Ia-zI2, 1 Op-l(u)dudzl, (26)
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where u = (Z2,..., zp). Next, for the t density fp(z) = fp,,,(z; 0, 1), a slight modification of (12)

is needed. Let A 1 = A/ jac to get

V/ 1012 \(p+,,)/2 dzlVc I2\ )(p+&,)/2
0 == ' L (a) IA 12 V ) dz = f1()a) lal" A, L V l21z12 dz. (27)

Now using the sampting density whikh is proportional to Iz[-(P+k) on A1 , we get

f ((V+ I2) J12ý2 (p+v)/2 dz (28)0 JA V V+ 1a121Z12 ) (21 +8)

Such expressions provide guidelines on the nature of the sampling function to use for im-

portance sampling. The specific choice depends, as mentioned before, on the nature of A,

specifically, on the shape of A near the origin (or A1 near the point el). In particular, let

B = {x : x, >_ bi, x2 > b2 }, where the b, are positive; without loss of generality, suppose that

b, < b2. When the correlation between X1 and X2 is p, the point, fi, that is closest to the origin

(using Mahalanobis distance) is

J(bl,b2 ) if p < bi/b 2fl = (29)

(pb2, "'?) if p >_ bu/b 2.

Transforming to the independent case and rotating so that the nearest point, a, is in the el

direction gives

I ([b'R-Ib]1 / 2 ,0) if p < b1 /b 2  (30)

(b2 , 0) if p 2! bl/b 2.

Thc region A is givcn in Figures 1 for p < bI/A 2, and 2 for p Ž bl/b 2. Since the nature of

A0 = A - a at the origin is determined by the difference p - b1/b 2, the ratio bl/b 2 will be

preserved in the calculations above: in effect, the region B will be moved outward towards

infinity in the direction of the vector b = (bl,b 2).

{FIGURES HERE}
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We will now provide some of the details for the normal distribution; for a fuller account,

see [171. When the correlation coefficient p is not large (p < bl/b 2 when b, < b2), the bivariate

sampling function consisted of a product of two exponential densities, and when p is large, the

sampling function consisted of the product of an exponential and a normal. This is intuitively

plausible, since for small p, the bivariate normal density is not far from the independent case,

while for large p, it is not far from the singular case, for which the exponential given in (113)

yields accurate estimates. Transforming back to X (with P12 = p), the estimators are given by

the following. For p < b1l/b 2 ,

02(b; E)(1 - p2 )2  -T'R-'T/2

(b, - pb2)(b2 - pbx) e (31)

where T = (TI, T2) has independent exponentially distributed components with mean vector

((I - p2 )/(bI - pb2 ), (1 -p 2 )/(bi -pb 2 )). And for p >_ bl/b 2 it is

k(b2) e-T 2/2I[(T, U) E Ao], (32)b232

where T and U are independent with densities I a I e-I'1• and 0(u), respectively, and A0 =

A - (b2, 0) is the translate of the set given in Figure 2. For both of these cases, it can be shown

that the cv2 for the estimators given above all tend to zero as a -+ 0o, that is, as the tail

probability diminishes. The proof for the normal case is given in [17]. We omit the proof for

the t distribution. Instead, we turn to the key quantity that is used in the proofs, Mills' ratio.

Several definitions of the multivariate normal Mills' ratio are available. The first definition

is due to Savage, [29] for the case of orthants:

Mf(B; R)= P(X E B) (33)(ývb; R)'

for X -' Np(O, R). Another definition is gotten by first transforming to the spherically symmetric

case with Z, A, and a replacing X, B, and /3 respectively. For r =jaI let

M2(A; I) = P(Z E A) (34)
1(r)
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This definition applies to convex regions A, not just orthants. However, the two definitions do

not coincide when B is an orthant. For R $ I,

M2(A; I) = P(Z E A) = ( 2w "1'/2 P(X E B) (35)
(27r)(P-1)/ 2¢p(a; I) - RI)dOp(/3; R) '

so that the two definitions differ in two respects. First, in place of /, it uses the vertex b;

for example, when (bl,b 2 ) = (1,2) and p = 0.95, (/#1,,#2) = (1.9,2). This is an important

difference, because when the correlation is high, importance sampling centered at b can be much

worse than that centered even at the origin (see [17]). Second, the new definition has the factor

(27r/ I 2irR 1)1/2; this is not an important difference, but it does mean that proper comparisons

of the two must first adjust for this factor.

For the multivariate normal, the following inequalities for M2 generalize (15):

M2(A; I) < 1P[(T, U) E Ao], (36)
r

and

M2(A; 1) > P[(T, U) E A 0] - LA 2re-t¢u)dudt

1 [0TU E -j'tOr~(tL)dtudt
> P[(T,U) E AO]- -re (37)r -Ie"(udd OF72

_1 [P(,U) EA0] -1],
r r

where (T, U) is as in (32). When A = L-1B, where B is a quadrant, explicit expressions for

the bounds in (36) and the first line of (37) are available. Such inequalities are not available for

MI. These inequalities are used in [17] to prove that the estimators in (31) and (32) have cv 2

tending to zero as a --+ oo.

Mills' ratio for elliptically contoured densities are defined analogously: the numerator is

P(X E B), while the denominator is either 4p(b; R) or p(/,3; R) for MI and M2 , respectively.

In [9], Fang and Xu give a detailed account of M1 They show that if X has an elliptically
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contoured distribution given by (2), where g is a non-increasing function, then the function

-P(X E B) is a Schur convex function; they use this fact, along with standard majorization

results to provide inequalities for M1 . A detailed study of the analog of M2 for other elliptically

contoured distributions has not yet been done.

4 Computation of Moments

In his paper, Brillinger [41 noted that a moment generalizes the notion of a probability, since

the latter is the first moment of an indicator function, which is a building block of integrable

functions. Here, we use the term moment to denote the expected value, when it exists, of some

function of a random vector, that is, E[g(X)l = E[g(X 1,..., Xp)}. Conventionally, (product)

moments are defined as E [HjUI- Xk'], where ki are non-negative integers. In this section, we

discuss three methods for computing moments for elliptically contoured distributions. The first

uses the characteristic function when it is available, the second uses the stochastic representation

(1) when the moments of r are available, and the third uses several partial differential equations

that are given below. Throughout, let X = 11 + ± T/2Up, as in (1).

The first two methods, which are due to Li [23], are of course equivalent; computational

convenience dictates the choice of method. Let the kth moment (when it exists) of the vector

X be given by the matrix fk(X), where

S k)) E[X®X'®X...®X'] ifkis even
F() 7r (38)

E[X ® X'® X...® X'® X] ifkisodd,

where ® denotes the Kronecker product, which has k terms in (38). This definition reduces to the

usual mean vector and covariance matrix when k = 1 and 2, respectively; FI(X) = JA whenever

the first moment exists. For k > 3, the following recipe tells us where to find E [ Xk] (with
~(k)E(•X•..Xk)

•7=1 k, = k) in Fk(X): if the terms in the product are strung out thus, /Yrs = (X, X, ..
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then
[(k+1)/21

r - 1 + E (i2j-- 1) p(k+1)/2--j (39)
j=1

and
[k/21

8 1 + E (i 2j- 1 - 1) p[k/2]-j, (40)
j=1

where [a] is the greatest integer in a.

Using this notation, the matrices FIk(X) can be expressed in two ways. First, if the charac-

teristic function is known, repeated differentiation of it gives the following expressions for k = 2

and 3:

r 2(x) = yp'-2V'(0)E,

r 3(X) = M ® M' ® M - 20'(0)[1 0 E + E & I + vec(E)p'], (41)

where vec(E) = (an1,ar21,...,apl,... ,Ip,... .,app)' strings out the columns of E into one long

vector.

This formulation is useful for the family (5), for the characteristic function is given by

-,k(t; 17) = M= (7) (m + p/2) (-rt/4)' (42)

so that -2V'(0) = r1(2k + p)/2p. A proof of this result is given in Iyengar and Tong [15]. When

the characteristic function is not available, but the moments of r are available, the representation

(for M = 0 and E = I) X = rUp implies that Fk(X) = Tkrk(Up). Since Fk(Up) can be derived

from the known properties of the normal distribution, -20'(0) is replaced by E(r 2)/p in (41).

For instance, for the multivariate t, the characteristic function is intractable, but the density of

r is proportional to

rp-l + r 2 /v)-(P+')/ 2 , r > 0, (43)

which yields the finite moments upon integration. Expressions for the fourth moment 1 4 that

involve V"(0) or E(r4) are given in [23]; even higher order moments can be computed along
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the lines outlined there. Since quadratic forms in elliptically contoured distributions arise in

standard testing procedures (see Anderson and Fang [2)), Li also provides expressions for their

moments. b

In a related study, Xu and Fang [361 define an n x p matrix has a matrix elliptically contoured

density if TX has the same distribution as X for every n x n orthogonal matrix T. The density

then has the form cn,pf(X'X); if Y = XE 1/2 for a p x p covariance matrix E, the density of Y is

given by
C ~p IF'1-n,2 f(F-1/2y, yE-1/2). (4

In their paper, Xu and Fang give the expected values of zonal polynomials and other symmetric

functions of W = Y'Y. The expressions are rather involved, so we omit them.

The third method of computing moments has a longer history. In 1958, Price [27] proved

the following result. Let Np(p, E) denote a p-variate normal with mean p and covariance matrix

E = (a.•j). Suppose that X = (X 1,. . ., Xp) has a Np(p4, E) distribution (written X , Np(g, E)),

and let g,(XI), .. ,gp(Xp) be differentiable functions of the components of X, each admitting a

Laplace transform; then

-a---- E gk(Xk) = E gk(Xk) for i $ j. (45)

Conversely, if this identity holds for arbitrary gl,...,ggp (with both expectations above defined)

then X has a multivariate normal distribution. Price and others used this theorem to facilitate

studies in signal processing. In particular, suppose that a zero-memory non-linear input-output

device with Gaussian input Xi that yields output gi(Xi). The pth-order correlation coefficient

of the outputs is a quantity of interest which requires the computation of the expectation of

H1• gk(Xk). The differential equation of Price's theorem provides a useful computational tool for

such calculations. Consider the following trivial example: if h(p) = E(X1 X2), where p12 = p
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is the correlation between the standardized variates X, and X2, then h'(p) = 1, and h(p) = p

follows.

Although Price's theorem is an elegant result, it has several limitations. In fact, Pawula

[25] (see also Papoulis [24]) noted that when p = 2, and the right hand side of (45) can be

evaluated explicitly, there is a single differential equation to solve. But for larger p, there are

p(p- 1)/2 differential equations to solve simultaneously. Furthermore, Price's result only applied

to a product of functions of individual components only. Pawula used a result of Plackett [26] to

overcome these limitations. In 1954, Plackett proved the following identity while investigating

a reduction formula for multivariate normal probabilities: if the density of a Np(/s, E2) variate is

Opfx - IL, E), then

0 02aj -P(X - IL; 92 -P(x - y; E), for i j. (46)
0aij 9xOx,

For the case i = j, we have the diffusion equation

0 1 02
OP(X - 2 OIP(X - it; Y). (47)

Pawula used Plackett's identity to extend Price's theorem thus: if g(xi,. . . ,xp) is sufficiently

smooth and vanishes rapidly near infinity, then

49, E [g ,..,g(X=, ...,XP) for i Y j. (48)

This extension allowed the study of more general functions, such as the "linear rectifier correla-

tor," g(x 1, x2 ) =Ix1 + x 21 - xi - x 21.

Pawula then used the following method, also due to Plackett, to reduce the number of

difr(rential equations to solve from p(p - 1)/2 to one. For a given E define a line between it and

the identity matrix I, Et = (1 - t)I + tE for 0 < t < 1. The chain rule then gives

0 02
(9 - A; Et) = Z' oj M( - P; ), (49)
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so that

-Et [g(Xi,..., Xp)] = Et aEij 02 a ig(X ,... ,

where Et denotes the expectation with respect to N(pt, Et). When the right hand side of (50) can

be evaluated, a single ordinary differential equation results. By solving it, Pawula showed how

to compute the moments of various functions of X, such as products of Hermite polynomials or

error functions. In some cases, higher order derivatives with respect to t are needed: they are

just iterates of the partial differential operator on the right of (50).

The search for bounds for certain probabilities and expectations has recently led to several

generalizations of Plackett's identity to elliptically contoured distributions. The first is a result

of Joag-dev, et al. [18] which only requires that g in (2) be differentiable:

9 • 09 a) = - (Xk)f( X; ,A , (5 1)

acr, 3  ~k=1

where aik is the i, k element of E-1. Another is due to Iyengar ([12], see also Iyengar and Tong

[15]), who proved the following identity for fp,k:

a ; ) k k! r(P + m) a2

op,•2 m= m! r(P + k) Oxa f,m(X ,,7). (52)

This specializes to Plackett's identity when k = 0. Finally, Gordon [10] proved a definitive

version of Plackett's identity for elliptically contoured densities (the proof of which he traced

back to [8,18]). He showed that the following two statements about functions g and h, each

mapping IR+ into itself and vanishing at oo, are equivalent:

h(t) = 0 g(r) dr (53)

and

a-gr(x) = a hr(x), (54)
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where gr(x) =f1/2 g(x'E-Px), and similarly for h. When g is an exponential or an appropri-

ately chosen gamma density the identities of Plackett and Iyengar, (46) and (52), respectively,

follow. Next, for the p-variate t with v degrees of freedom, we have

h(t) = r((p + v)/2) v + t)_(p+-_ 2 )/2  (55)
(irv)P/2r(v/2) (p + v - 2)(1

These extensions of Plackett's identity have been used principally for theoretical investiga-

tions, in particular, for studying the nature of the dependence among the components of X. A

systematic study of their use for the computation of moments of various functions (other than

the usual product moments given by Fk) has not yet been done. The mathematical basis for

Plackett's identity goes back to the 19 th century work of Schlifli [31] on hyperspherical sim-

plices, and the later work of the geometer Coxeter [6]. For more on the geometrical aspects of

Plackett's identity and related issues, see Abrahamson [1] Iyengar [16] and Ruben [28].

5 Conclusion

In this paper, we have discussed recent developments in probability and moment calculations

for elliptically contoured distributions. These developments should allow the use of models other

than the multivariate normal for high dimensional data. Clearly, much more work needs to be

done. For instance, since Monte Carlo is an increasingly popular method for assessing the

performance of various systems, a more systematic study of appropriate sampling functions is

needed. Only the beginnings of such a study are given here.
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Legends for the two Figures

FIGURE 1: p < bi/b 2; A is bounded by L, and L2 .

L, z2 b=(1 - (z, - (b'R-'b)1 /2), for z, > (b'R-'b)1/2

(b2 - pbl)

L2 :Z2 = (bl - pb2)/2 (z - (bzR-b)11/2), for zl > (bR-lb)1/2

(b, - pb2)

FIGURE 2: p Ž bl/b 2; A is bounded by L1 and L 2.

(pzl - bl )
L, z2- (7= ' for z1  b2

(pb2 - bl )
L2 : z, =b 2, forz 2  (p 2 1)2

(1- p2)1!2
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Abstract

In this paper we discuss the problem discriminating among various non-linear time
series models. While the method we propose is of a general nature we consider a re-
stricted class of models that share an identical AR(I) equivalent correlation function
st ructure ;hence. identical spectral density. Consequently, the possibility of discriminat-
ing among theni on the basis of second order moments is theoretically, and practically,
impossible. The approach being taken is aimed at discriminating among the models
on tlhe basis of higher order moments i.e. the higher order cumulant structure. Specif-
ically, we shall focus on the 3":-order cniuilant structures as our initia.l step beyond
the conventional covariance structure.

Key Words : Time series, Linear, Non-linear, Gaussianity, Stationarity, Au-
toregressive, Exponential Models. PAR( 1), ARE"( ), EAR((I), TEAR(l), NEAR(t),
Robertson's Fixed and Random Models. Correlation and Cumulant Structure.
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1 Introduction

Statistical mnethods based on moment information have been used extensively. In terms of

nmodel identification the time series literature has been devoting a considerable attention to

the problen of identifying the p and q order under the general linear framwork of ARMA(p,q)

modelling. Second order correlation inforniat ion (e.g. acf and pacf) became a main tool in the

process of of selecting p and q. While second order information is of paramount importance

in the case where the roots of the AR and MA polynomials remain outside the unit circle,

higher order cumnulant information becomes crucial in deciding on the locations of the zeros

or poles of possibly non-invertible, non-causal and non-(aussian ARMA models. Of course

there are many very useful statistical tools for solving the above mentioned problems which

are not based on moments. For example, the use of information based criteria such as AIC.

MAI(' and BI(C in selecting orders of an ARMA model, the use of MLE in locating roots

of a mixed phase ARMA process, ect. While these non-moment based methods might be

more efficient than moments methods, the moments methods are generally simpler, easier

and ilt tiit velY appealing both in theory and computation. It, is often the case that, one needs

tle iinit ial point supplied by such a method to start, an eflicient but complicated non-moment

based met liod.

The inlt roduct ion of non-linear timre series models in recent. Years (e.g. bilinear, threshhold.

ranrdom coellicient, ect.) amlplified the irnl)ortance of using higher order cumulant infornia-

tion ir discriminating among the varioii•. non-linear models. It was shown that different

rmlodels are caalp)ale of producing an i(lentical correlation function of the linear autoregressive

type: thnbs. giving rise to a class of models characterized as 2"'-order equivalent. C'onse-

(iient lv, efforts have been diverted to thle analysis of t he higher order cunmulant structure with

tlhe hope of' exploiti ing diffierences among thei models at higher ori i cr correlation (tel(lendcy

r,'t ii(1urcr. [lhe 1hasic idea underlvfing the sea rch for informat ion in the higher order cuminulant

st riu(lire in or ler to (list inguiish tw() mo dels ma v( be stated as follows. Withini the class of
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monent deteriniation. moment sequences of two differeit stochastic processes cannot be

identical. Sp)ecifically, given two stationary series {.A,} : {11') there exists (71,,U 2 ,. . . , k)

such t hat k'"-order moments or ci'runlants with lags (u, 112, .... Ilk) of {X, } and { 't} are

not equal. i.e.

("A(,,,. 112- .. .. k) €4 ('y(111,12, -.. .. Uk).

In practi(c', one hopes that the above is true for a small order k, and the difference is large

relative to a given sample size. Oherwise, the search for a discriminatory power in the higer

or(der cuniulant struicture might turn out to be fruitless.

The prob)lem of (liscriinunat ion among non-linear tine series models has b)een considered by

many ant hors. Lawrence and Lewis [24] considered special 3rd-order structure of the form

Co(R 1k Co,'([Rl')]"

where ji}") are thle linear autoregressive residuals of order p for RCA and PAR models

Within the class of bilinear models Li [26] and Gabr [10] considered quantities of the form

f (. ,.\t+k)

respect ive yev. ,.\iest ad and Tjilst hein [1] coonsidered fhe use of non-paraunetric methods aimed

at the conditioiial invaii and variance of various non-linear timie series models. Anderson [1]

approached Ihis problem dif[rerentliy by observing difrerences in the sample paths generated

by the expolnential family. U sing a fluctuating type statist"ic he was able to discriminate

amorig silmuIlated t races for a reasonable nun iber of observations. In his work the monient~s

(do not play a role in the i)roposed (liscrimination procedure and as such may provide an

alterinative ill sillial ions where ilnonwleits ip) to Ile(' desired order (10 not exist. Tsay [37]

f(,,sr a,,,,.V gei ,irai m'ethodI for selectinig a iiiodel d(ependiig on i he type of characteristic

()o is in" 11teresled to investigate.

We pr)r( •w, a iiew a pproachl which relics on the ('oljecttilre that, the informat ion required for

disclri-iiir1atii, am4)ing thle ,n,,dles i available in the higher order momnents or equivalently,
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in the higher order cumulant structure. Spcicfically, we shall concentrate our attention on

the third order cumulant structure given by

C(',; = ([X - L1.1)- L).V - /,]

ThIe family of exponential time series models will be the framework within which we shall

show the parametric equality of the correlation (hence, the spectral density) functions, and

the way in which the theoretical higher order cumulant structure points out to the differences

antong the mo(lels. We demonstrate the metlhod for a restricted case where we consider a

family of non-linear time series models with known marginal distributions and a common

A\R( I) equivalent correlation struct tire. This family consists of marginal exponentially dis-

trii)utt((d liie series models which includ(le

* (i) Product Autoregressiw y Model [ PAR( I)

# (ii) Exponential Au toregre.ssive Model [ EAR.(I)]

* (iii) Transposed lxtponential Autoregressive Model [ TEAR(1)]

o (iv) Newer lEx)onenlial Attoregressive Model [ NEAR(1)

* (v) lRobertson's Fixed Model

o (%vi) iUolert son's IRandom Model

In addition we sliall consider t lie Iiear autoregressive model with exponential innovation

process whitch we shall call Al I). As opposed to the fanilyl mentioned above the ARE(l)

d(oes not hiave a knowni margi nal disltribution :however, its morients can be computed. This

model. tlhiouli, sl harTs tle same correla tion st ruict tre as the non-linear exponential family.

[iel 11i,'rlyi'ivi• oh j,'ct ive is t(,discriminale among realizations produced by the models

we cotisi.le.r. Thi js task is imlpossiblhle to accomplishi sin(ce t hey hiave identical second order
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Till [)ala For hilt paper is it' ['oillo%\.. we shall start with at brief review of thle t'radit ioial

f int' 5t'li(' iii)l(l5dl ill seci' on 3. Ini that svt'(tionl wt shall state Iithe loruii taiken iii) by eacih

(Oll('lat loll functions11. IlThen wc 'v ~it abrief'Ivrview of' higher o~rdetr cnrulaits, ill s(ection -1.

Siibs~in~i t l. lt r'snlI s we, okl~aiiiu't for th Tl'3'-ordcr cutmit11arit strd ucis' for 1hlt's-ev('ii

lit)tl'5IcIis(' 11drcolisitlt'a it~iis alt' pre(setedt' ill sccl ion .7). ( "clicral meitho idology is presenitc(4 ill

Scclionl G. Hlit' ,siI of 111c slimlaioi pihh art aric thle topic of st'ct ion 7. The(re' we also hrictflY

dliscuss. 111 hway Iil whichl th l ait'1111'lpic (5 trcs(orre'latio f~unclt ions a.tul T'l-order curnir11ilalits

2 Stationarity, Linearity and Gaussianity

Over th lst' l-Ms yc(ars stilt ist iciaris havc~ee d'l'ped at large body oft hieorv anid met~hods ailin'd

at t li analvoiw o4 h~m' sti' dat a. A n'oniurthi'lsivo' auctniiii of t heir awok ('Iinrinlat(l in

btioks such as.l k'ritlall anid Stunart [17]. .Jenkins and Watts [15], Box\ and JIenkins [5], Hlannani

[2]. Anh'icsoii ý2. I ill in1g(r ý7]. ('lit field H.] I\O0plIMIhS [1 8.1~1,PiVSt(Icy [30]. 1ROSClbil)lt1

[321, antd lrockwell anid IOavi' [8], to n1anie a few. liT'e fouindat ions of classical timec series

anlalvys.is,ý ad ltcribctl ill thlit above r'ft'r(' nu's. were thouighit to be based ()If two underlying

assliflipt lors. s ~til~tat

[. li tnit', "cries isý 4t1oifiuiri to anl 0141(1 of at least two. l~T' pnrtt's is ass~miicd to

rcn la il inl c'1 iilibriluun a hout at toultaw lit man level w~ith tithe proport ion ol ordintales not)

cxct't'thl2 liv 'i~ct'l lt'vt' is alwout ctjual over anly t mu'c initurval spanned by tilt' sample.

Ill ta,(' Ow lit' vc Jttllseries dot's lit) exhiibit much lwlia~ior. it is firit her assumei(d fiat
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weak stationarityV cai be achieved by applying an approp)riate transfimriation e.g. linear

filtering.

"2. The timie series, viewed as a stochastic process, { EXtI T )'}, is an output from a

liwtar Jilte r whose input is the whi/t no i, process { Z, hence, the observed sample

realization can be represented as a linear function of past and present values of {Zt} -

a one sided representation.

In recent years the validlity of these twin assumptions - as reasonable apl)roximations to

sample trace realizations - has been questioned as data from a wider variety of sources

became available. Coupled with advances in the field of non-linear dynainics (deterministic

chaos theories), research in the field of non-stationary, tion-linear and non-(aussian time

series iiet hodology have been in progress. Subsequent efforts to bring non-linear time series

literature mid'er one unified framework resulted in the p'illication of' books like Priestley

[29] and Tong [36]. The reader is also referred to Mohler [28] for a collection of papers on

theory, cominutational methods and apl)lications in the area of non-linear signal processing.

long [361 discusses ptropierties of the Gaussian stationary linear model (S;SI,M) which may

possiYly be violated

"* (a) Time series that exhibit strong asvmmet ic behavior cannot be expected to confirni

to the (;S,.NI. Such models are characterized by symmetric joint cumulative density

functions and that rules out asymmetric sample realizations.

"* (b) The ;sI, N does not give rise to clusters of outliers e.g. sudden bursts of large

Tnagni t lides at irregular time intervals. Observed time series in socio-economic related

phentomeina do tend to exhitbit groups of outliers.

"* (c) Satmple traces that lenionst rate strong cycles cannot be modeled by I he GSLM since

the regression finictions at lag (k) i.e. L'[.Vl.\,_k] are all linear due to the assmed

.1>iint iiotrmalit v.
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* (d) The Gaussian process { X, } is reversible i.e. (X1 ,. ..... .vt,, )' has the same distribution

as (.\ X. i )'. Reversibility is violated in the presence of differences in the rate at

which a sample path rises to its maxinma, and the rate at which it falls away from it.

One simple way for investigating departures from reversibility is to plot the sample on

a t rat iispareticy and then turn it over. If the mirror image is similar to the original plot

t hen the series may be assumed reversible - irreversible otherwise.

()Ote could also test formally for Gaussianity and linearity. Following Brillinger [6], who

pointt el out to t lie potential of using the bispectral density function as the basis for classifying

a process as linear (and possibly Gaussian) or non-linear, Subba Rao and Gabr [35] and

1linriich (13] developed formal tests for linearity and Gaussianity. The tests are based on

the con 5s1an cv of the normalized bispectral density function under the assumption that {IV,}

hiave a. linear representation. Toýng [36]) provides a comprehensive review of tests for linearity

and noriiialitv. Priestley (291 considers the case wv'here a stationary process does not fit into a

linear representation and concludes that "a fortioi riany types of non-stationary processes

woulld also fall outside the domain of linear models." In summrriary, observed time series do

riot necessarily conform to 1nodels such as the GSLM. The degree to which a. time series

realiz;0a t m relprtcients a trace generated by the GSLM, has a direct bearing on the usefulness

f est'imating an ARIMA(p,q) model. For purposes of prediction, forecasting and control one

is better off taking aýdvantage of the non-linear (hence, non-Gaussi;an) structure of the data

-hiring tIl,' imodeling stage. If Inleed the CSIA L is deemed inappropriate, one has the choice

ai,,ong several fa iiiilies of non- linear models,. We, shall lurn to some of these explicitly in

SecUt Ion 3.
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3 AR(1) Type Exponential Models (EAR)

'I'lie familyi of iiodlels "v consid~er here is t hat. ol t. he( (xponU lial ( attloct qt.SstV models, Whtich

is cm I ipose(I oft I wi F A R( I) aii(Idits generalI izat.ion tot I. li I t~iwnsposcd1 .rptnin Inial (lutOntiqtssim~

MioIdel A f (1[), alld te li nt, r trjon itlkl ntiuotuigisi i' NEVAR 1~() model. This t~ype of tilme

,Series modl(l(s were p)roposedl Iw a ver and Lewis [I I], La wrance and Lemis [20, 21Jb.Jacob~s

an 11 w A ki [PI]. I a"w anice [1 9] atd 11in rther dlevelop~ed by Lamwrance atid IAvwis 122, 2:3, 241. AlIso

we cons tiecr lRo1ert son ~s lixed andl R{andoim modlels [31], and the P rod lid Autoregressive

PAR I~ () model( prop osed1 by 'M clenzie [271 - where a~ll miodels b~einig restricted to a [first order

aitit oreg~ressi ye st ructulre.

Iii contitrast withI ot her tiot-linear time series, models (eqg. bihiiler and threshold), this class

of ri t(I(1 is an at mtii ) to capt ire thle behavior of, possibly ob~servedl, tiite series processes

xvi I I expl)icit m a rginial ex potiential (list ribtit ions. The famiily of' L'A m{ilodels is adlvocated

as a xv i v of relaxing thle assi tipkmin of niia rginia I ( a issiaiiity whv iich underlies the C aussian

liniea r stat ioinary iilodlel. Tie reasons bllehintd tlie( choice of the exponlent~ial (list iributiioul a's

thle imariginalI (list riblit ionl arie given il (;aver- Lew~is [11] and Lawran-e and Lewis [231. 11we

st andarda rlIinear first order alit oregrssi xe process, i iwithi exphoinential input,, A RI( I),

wviIl be u sed for cotmipa ris;on puposes iin section 5. T his model ia~s aii identical correlation

and1( s pect ral denls~i I iiict~ioiis as (10 thle model( mieint~ionedl above :however, it~s marginal

(list rinit ion is iiot knowvi, thlus, it is riot to be consideredI as anl exp~onenltia1 m110(1( but,

rat wir as a Iiiia r AW I () 1110(1(1 xwithI ex potien Iia in put . The fact that. it. is li near enab~les w3

t') (listinlgiiishi it frorii anlY ot her nion- linear iiiodel. wvith or without art idlentical correlation

sIrii ii r'.Ia sed onl t ie( thleoret ical resnit stating that a process wvi th a linear representation

hia a flat onwsi a nt ) iiornmali zed bi spct ra I densitY. for more dletailIs see Sn bba IRao and C abr
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3.1 PAR(1) Model

A nat lral exti'iI sii of t hIe lineair A It(I) IIlodel was lpropl)osed by %l l eizie 127] dii( (onsi-l.s

ot'f dim (eXponentiationll of 1li6 liliiar =H(h(l sm'l1 tdial tlh a(hllitiV formi is eilng tra.nsloiiiieil

iIIto I IIttpI i)l('ttive toiIII. I htre we con IIsider a. se,,-liit case of tIe ga.innia Ianiily of IIarginally

dist til)ite(i titme series where the output s'ris has all ('X)O'et ial miarginal (listril)iltifio of

tilit iica l.. Spe<ificallv,

,liere, (I G (0. 1) and Vt is given b)v ai iifixtuIii, (,f iilfolrli (0, ,T) aii(, expoi(iitial lineadl one

randomioi variables iiidepenidenht of (eaclh othe'r.

Tlhii I i, ,'del ] di f['rs from t he ot hers we consi(ler in two aslects. First, the i wnovation lpromiss

d(oes not posess a known parametric deusitý lfunction and( its higher order (un lait struci.ire

is expressed il (tlrms of' li I(' mo•e•ts of X, only. Second, we note that (3.1) mnay be linearize(d

l)V taking th'e log, of hoth shiiles of the e(qiationm. As\ such it. is (cla.ssifie(d.n ia ianl tril.Siclly

linear l1l(h(1 i.e. I lioli-li llar 111o(hl( which cali be linearized. It, dilfeirs from the following

Models which c , n linearize(l due to their switch ing nathirle and are to be conisidered

under tihle class of ilt rilsicall iioli-liiiear models i.e. a noii-liniear imodel which call not, be

li ('lari/ed.

3.2 EAR(1) Model

Ill lite followiig set t p, we let I F, } be a sequence of i.i.d exponent ial (A) randoin variables

with a probability deisit~v function given by

.; f- 0• 0. A >0 (2

( otherwise
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We define an EAR(1) model as,

Xt pXt-1 + Et (3.3)

fP t-I with prob. p (3.4)
pXt-i + Et with prob. (1 - p)

= pXt-1 + ItEt (3.5)

with (0 < p < 1) and {It} being an i.i.d sequence defined by

Ot 0 with prob. p (3.6)
1 with prob. 1 - p.

Under this formulation {Xt} is marginally distributed as an exponential random variable

with parameter ,\.

Gaver and Lewis [11] point out to several characteristics of the EAR(1) model:

"* Setting p =- 0 yields the special case where {Xtj is a sequence of i.i.d exponential

random variables.

" Et is not a continuous random variable. This feature distinguishes (3.5) from the usual

linear AR(1) equation with Gaussian or exponential input.

"* The representation (3.5) is one of a random linear combination of an i.i.d exponential

sequences; thus, can be easily simulated on a computer.

One problenm the EAR( I) model has is called 'zero defect' (see Lawrance and Lewis [22]) and

relates to the sample paths it generates. Specifically, the model generates paths in which

large values are followed by ruts of decreasing values, with the runs having geometrically

distrikl)ted lengths. The large values arise when Et is included (i.e It = I) while the falling

values stern from the deterministic part of (3.5) (i.e It = 0).
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3.3 TEAR(1) Model

A nattiral extension of the EAR,(I) model is to interchange the role of V,-, a.ll I F', in (3.5).

This does not affect the exponential (A) marginal distribution of Xt. IUponi replacing p by

I - o we obtain the transposcd cxponenftial aittor•grcssit,. TEAR (I) model

. h it Xt- I + ( I- () E, (3.7)

V \t- I + (1 -I a)Et with prob. (a (3.8)

= (1 - a)Et with prob. I - o

wVhere

it 0 with prob. 1 -a (3.9)
I = I with p)rob. (.

Note that in I this case the innovation process is a, continuous random variable scaled by

a. constant I - a. The behavior of a simulated path, for a large n, shows geometrically

distributed runs of rising values (i.e. It = 1) followed by sharp declines when the selection

It = 0 is made. The decline due to the exclusion of the previous value -t-I.

the TEAR(1) model is discussed by Laawrance and Lewis [22] as an extension of the EAR(l)

model. tlowever, T EAR(I ) is also a special case of Arnold's [3] exponential model driven by

past innovat ions. Specifically, define the random variables

Nt = I if and only if (I t

,Vt = i if and only if Ut = 0, (t-, = 0 ... Ut-i+, = 1

where U, are i.i.d Bernoulli(p) random variables with Nt being distributed identically but

not uidepen(lenllV as (;eomet ric(() ranDdora variables with domain 1,2,3 .

The model. expressed in terms of past innovations, is given by
N,

X, = (3.10)

wh,'re 5, -- lid Exp( A) and the sum is multiplied by a to obtain strict stationarity. This

represenil at ion is obt aine(d if one express the TEAR(1) modcl (3.8) recurssively.
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3.4 NEAR(1) Model

The previous two models, EAR(l) and 'l'lAR( I(), are special cases of a more flexil)le model

in which {X,_t } in (3.8) is scaled by a coefficient /3; thus, simulated realizations generated

by such model are of interest as it, may circmmnivent the problem of geometrically distributed

runs of falling or increasing values which might not be applicable. Specifically, let {Xt}

denote the tim(e series variables and {Et} be a sequence of an i.i.d unit mean exponential

randoli variables acting as the innovation process. The NEAR(1) model is defined as

, E +{ 3Xt- I with prob. a
= + 0 with prob. 1 - a

whmere

Et with prob. p (3.13)
bEt with prob. 1 - p

I0 with prob. I -a (3.14)
1 with prob.

with b) (1 - o)3 and =) -(,-)3" The parameters (v and 0 are allowed to take values

over the domain defined by 0 < o, 13 < I with a-. 3 $41. Setting (a = 1 , 0 < ?.- < 1) in

(3. 12) yields the EAR( 1) model, where fixing (3 = I , 0 < ot < 1) give rise to the TEAR(1)

model. B oth are extreme cases of a NFAR(1) process. We note that dute to the distribu-

tional assumptioni nderlying { E, }, the innovation process is not allowed to take on negative

values i.e. P[Et < ] = 0. It is obvious how the concept of "switching" comes into play in

(3.12). The switch from one linear piece to the other is controlled by an external random

mmecha m isn with a prespecifie(l parametric probabilist.ic st ructlure.
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3.5 Robertson's Fixed and Random models

Robertson [31] suggested two exponential models which we shall refer to as Robertson's fixed

and random models. Our main concern is to show that these models cannot be identified

via the correlation or spectral density functions ;hence, one has to explore the higher order

cumulant structure.

3.5.1 The Fixed Model

Consider the following switching structure

SXt-I - in/i with prob. 3(3.15)
t= Et with prob. 1 - (

where 3 is a fixed constant, Et has a truncated exponential distribution given by

f 5 0 < C < -n/I (3.16)
fE(•) = 0 otherwise

with the marginal distribution of Xt being exponential with unit mean. Alternatively, (3.15)

may be represented using an indicator random variable i.e.

.\, =I,(.\t - in/i) + (1 - lt)Et (3.17)

where {I with p)rob. 3(.
0 with prob. 1 - 3..

3.5.2 The Random model

Oe() may getneralize the fixed model by allowing 3 to become a random variable which acts

as a mixing (list ribiition, wit h donlain restricted to the interval [0.1]. Specifically, let Xt have
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t lie represeittat ion

Vt .t-l - h71L3t with prob. 3, (:.19){ = Et with J prob. i -- (31t

or stated it terms of an indicator random variable

-t It(,Vt-I - ln11,t) + (I - it) Et (3.20)

where {I with prob. ! 3t
it 0 with prob. I - 0j. (3.21)

The probability density assigned to ;It is a. beta density with parameters (ct,2)

3) o (o + I(1-3) 3- 0< 3< I , o> 0

f ,(U) { 0 otherwise. (3.22)

The (list riblition of h13t is obtained lusing the standard transformation of variables technique.

Let V = 11.1, then

A {(Y o(cl+ 1)( -y)' -c < O, > 0 (3.23

"/"( 0) { 0 otherwise. (3..0

The I prolba)i lit v density funct ion for lt is appropriately modified

fE,() = I 0< - (3.24)
1. 0 otherwise.

Within this framrework one notices that tihle randonm variables It and Et are not independent

as tfhey I both involve the nIixing (list ribution d3t. The marginal distribu|tion of Xt, though,

re111a1ins exponential with 1 unit mean 1w( construction. We remark that, all these models are

qtat io arv in the wide sense i.e. strictly stat ionary.

3.6 Summary

\We recall that the' models hider invesl igation are the following
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* ARE(1):

.\, A /" , i I- H, (3.25)

* PAR(l)

-\1  -\ '- 1(3.26)

* EAR(1) w
X f P.\vt-! with prob. p (31.27)j p.t- 1 + ±t with prob. 1 - p

"* TEAR(1) (p I - v)
N { \-+ +(I- )K with prol). (3.28)

(I - a)El't with p)rob. 1 - (

"* NEAR(1): {= !.I..-I +± t with prob. a (3.29)
t st re.with prob. I -

Wv h ("I'e. {E, with prob. p
, et with prob. I - p

t- 1-b b, =(I - n)j3

"* Roberston's Fixed Model :

f X1 t-i Iln with prob. 13
Et with prob. 1 -3 i

where
SIi--L t- 0 < t< -- lnki

.f() j ~0 otherwise

"* Roberston's Random Model :

{ .:-V - hn3, with prob. it(
"" t with prob. I - (3.31)

0 < • < -htin 3 t
'/;'( • = 0ottmrwise

So(o + 1)(1 -,3)/3,1-1 0 < /43< I > o 0.. (r0otherwise.
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Tlable I: ('orreliatio lll Iulltilolls

AR (I) lPA \1(1) i+ Al(l) T'FAI(I) NEAIR(I) 1{okcrtm0's VIxed Rlob)ertson's Ralndoln

lor all rtodis, but iRobertson',s aid PAR(I), thle input process {f J,} is assulled to be al

I.i.d expolleItia I sequelIce of III iit meaI alld, wit, II the exception of ARE,( I), tIe outl. plit, { A }

has a mnarginal exponential (list ribution withi mean one. 'I'll' c'orrelation tmdctions for tlh

vaiiouIs Miodels are giveii in table 1.

ligures 1-3 conlt.ain sitnulated traces produced by the various models. Note tha.t we indexed

tle paaramet er valies of each Ii odel .,ilch C.hat the correlat.iotn functions produce identi ical

result s i.e ,(..) = (0.1 )., (0.5), (0.75)'.

4 Higher Order Cumulants

Let {+\t} be a real vahltie strictly stationary random process and let, 7n1( I,2,... ) be the

A,''-ordler product iltlotieit i.e.

,(11  ./I .t ) d [Xk"I ,. ... (1.1)

For a stationar" process of order A-, we can write (4.1) as

M(/ 2 . ) / m1(0, 12 -- 1.:3 -t. .-k -- /1). (4.2)

Now let I he chara cIeristic ftunct ion (cf) of {-N, be defined bv

X. ( Ci .. . X,, +C A,+.. -o.k - )] (4.3)
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then the Tavlor series expansion of (4.3) about the origin is given by

12 ((1(,x2 ... XI , + o (I 1Ik)} dF (4.4)

k K iJ(EG. ¢,(( i(2 . (C.j) .., + 0(1 1k) (4.5)
J!l 'X(iC ( Vt)+ Cl

3=1

"-4 (t 1 ,1t2 .  k)+ (1() (4.6)
J=i

where _ [= {Z= 412} and1 F = * ,x½-,...~ "k(xvt 1, . .'"xt ) being the joint cumulative

(list ribution function .

The logarithm of the cf (4.3) is defined as the cumulant generating function (cgf)

Kx(,(, -... (k) = 1og{E[es((JXt1+(2X'2++(kvtk)]} (4.7)

such that ('(tIl t2. tk), the kh-order joint cumulant of the set of random variables

{-, IktN ...... Vt}. is the coefficient of (C, (2 .... , (k) in the Taylor series expansion of (4.7)

about the origin. Specifically

1 i ((¢1(2 .. - ,t ) ()k
X(K) - j CE(t,*2,. . ,Ij) + o(I C Ik) (4.8)

where (I I ..... t2 ) = ('umulant(Xt,X . 't 2 .... ,IXt,) • We note that the cunmulant of order

greater than two are all zero for a Gaussian process. This feature is used extensively in signal

processing to suppress (Gaissian i noise.

[Che relati iloship between momlllenls and cumulanits were formalized by Leonov and Shiryaev

[251 anl are given by

?11(1 . tk) = E¢[., 2, . . . t,•] O V ( "( V 2)C -,--.(:0(,p) (4.9)

where tle si• ii is taken over all parlitions (v'' ..... ,v) which is a partition of (t .... tk).

telationship (4.9) in1lplies t hat wo can write the nlomients in termis of the cumulants and if
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we invert (4.9) then one can write the cumulants it. t enrms of the corresponding moments;

hence, the inversion of (4.9) yields

( , ,. .... .. ,) I - )P- (p - I)!E ( I X ). E( I-[ X j) (4.10)
.jEvi JEvp

and( if the process is kth-order stationary then we may writ~e

('(tI,f,,. .. ,tk) C(O, t2 - t. .....- ,tk -I)

-- ( I, 72, T .... , 7k-l)-

Ihroni (-1. 10) it is seen that t hIe cumnitlant C(rl, r2,..., rk-1) is a kV'-order polynomial in the

momients of no higher than k and conversely, the kt'"-order moment rm(1 t-2, ,.... 1k) is a

.th -order polynomial in c(umulants of order no higher than k. Consider the specific cases

(',(0) - E[Xt] t,.

- 2

I {is) + /1('2 ~) + jIS 2 - s,;}I p +2/

p, I/I~ {i( "2 i. - ý,;I ) + /I +.3 ±1( I (S q '2 ) + 141 ,S Sý3)

+ 2p f /I(.I ) + .,(,S2) + P (-;3) + P,(82 - ý1 ) + It(S3 - S ) + It(S 3 - :2)1

-,.,,)/1(-'3: S '2) - 4 "•,("• -. ,)- /,(-,3)il,(•"2 - S1 6,•

where

,i. 2) = E[.I t -'+s,,Yt+s2.
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Consequent iy, one may write ( 3(s1 .•) in the [0i1',1

C( r(,',) = E [(.\'t - • ( + n) .'+• - :.](4.1 1)

- t'(.t,•t-.-.t+,) - r[E(XtXt+r) + '(•VtXt+s) + E(Xt+rXt+-s)] + 2 1,

and ('4(.'. ;2,s3) may be expressed as

C(r,.. tt) - tK[Xj.Vt+,Xt+s-t+uI (4.12)

- /J4 [A~Xt~ r t~ur]+ E[XVtXt+s-Vt+U]j + E[XtXt+rXt+sI + E[XtXt+rX1 +u])

+ 1( . + E[+XtXý,] + E[X1XV+uI

+ E[X 1XV+,-] + E[XtXt+ur] + E

- li.t.Xt+r]E[XVt.Yt+us] - E[XtXt+s]e[.XtAt+u-r] - E[XtXt+u]E[XtXt+s.+r _ 6,

For a detailed account of the relations between moments and cumulants the reader is advised

to consult Kendall, Stuart and Ord [16]. Cumulants and their relationship to spectral analysis

are discussed by Sesay [34] and Rosenblatt [33]. Sesay [34] discusses the various uses of

cnimilants and cirimilatits spectra, specifically

" ('mniulant spedt ra is used in tests aimed at discriminating b)etween linear and nlon-linear

non-Gaussian processes (see Subba Rao and Gabr [35]).

"• [he asypltotlic.distrlbutions in some non-linear theory may be obtained using cuniu-

lants.

"• Time reversiblilit.y may be determined by verifying C(-s. -Sk-,l ) = C(s, . . . . . ;k-i

or equivalently the imaginary part of the kA-`order spectrum is equal to zero.

"• (Cross-cmnulants. and cross-cunmulant spectra, can be used in the estimation of the

parameters of a non-linear difference equation through the use of transfer functions

that arise in the Volterra expansion (see Priestley [30]).
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5 The 3"l-Order Cumulant Structure

IlI I le following we shall present thle 3T'lorder c(lutlant, structure for each of tile models

discl sscd in section 3. For each of tet models a closed tori ,solut itlon to the 3" 1-order cuniulant

strtict tire is given. These solut iolls are ba~sed oil closed form expressions obtained for the

expectat jolterrits which del tie the Y'l-oftder curtitIlant structure. For all - but AR E( I) model

- tI Ie oit put process, is marginally dist ributed as art exponential process with unit metan. The

resilitls presenlted in t Ills section are -based on the marginal moments given by

py = 1 11 .2= 2 p,:l = 6

The miiput process is taken as an i. i. exponential process with uinit. mean; hence, with identi-

Cal moments as staled above. Robertson's and PAlI( I) models form a separate class, in this

respect, since I lhe innovation process is delined by a sequence of i.i.d truncated exponential

randlom variables a;d a mixttiire of exponetial and uniform random variables, respectively.

The HiN rolct rloon of a mixing (list rilmrt lon in Robcrtsont's random tmodel further complicates

lit, st t-110 III,, kf I lie innitovatioll process. Tables 2, 3 and I list the 3r"-order cutnmulant, structure

for t liese mto(lels. WVe recall t hat tI It models under Investigation are given by (3.25)-(3.31).

The following (epressions a re i ised inn tabels 2. 3, 4, 5 and 6

I -0

02)(--• (I -oQ)( - o)

6

!/0 
21

I -0

-- o

I -O21
1 - o

'~.I2I)- 0,
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ply + (I - p)b

1 -2 I

A -) ,1(r) - -

011

,, I /[In , Ij, j L-'[/:, I ,]

/, = ,,[hj,,3,2/Z] - + (I + , (•, ),

00

7)

0( + ) t

= I <I'[.,\ -j F[1 {3. ' .,..- -/ ,I

t + IV2)

[ -0

+ 2-

"[/'3- j +t +'2

111<1,]~ f~F (o +o~ 2 )2 { 1--- - )-2____ ____

{ o+ )' (a+ Y
t.:[h,.•/,]~~ =l /i/,.ff , + )(,+ 2) (, o + 2)2

o(( + I (v + '2 (o + "2)2 (a+ 2)-'J

(;i\el Ithe iI formiiat iol sululllialriled iII the1se, ( table"s one" inav st andlardize the rat.e of decay

of ti 1 correlatliout Il'iii('ion such that the correlat ion funct ions are identical for these models

for a ,ilC' u araI'anter vallIe. Our goal is to invest igate how wOlould the :Vd-order cunitilarit

si uut(' ic I helave sill),jec to a standardield (ortelation functlion. It is our con ject ,ure thal

Mtut llli,,hl t ,he able to ,li.. ilii lle' amou ig Si pa t ltaths l)ro(lhuicel lbv the various models on
the bIasis o, hig hr ordleru uuuuTe,.ts. It is ot,,Ois that the correlation functions can not be
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Table 2: Y3 d-Order Cumulant Structure: The Lijinar Model

ARE(1)
C(0,0) Px,3 - 3I'x,2Px + 2jx'
C(o, T) 2plx,2/Pr]

+[t-)- Y.11x2- 2iI']

C(r, T) '
2
TP,,3 + 2px,2[y(2r) - I(r)]

q-2y.XO[l_t2T -{.2(T)j- r tig }

-IIT ,2Px[1 + 20T] + 2 X
C( 1, I + T) -, 1,3 +[Jllx,2 + p][20' + -t(T)]

-- P+ [Tx,2{0 +•+ --1 +P -j-{y(r) + "y(r + 1) + 1}]
+2ji-x

C(h, h + r) 3+2h_

+20'P.,1-f2h)- yý(h)} +it,{y2(h) + -'-{_Y2(h) O- 'yh- ' [11x,2173 T h 1 .

/I_ [, +T+h +h }+z{r(T) + ±t( + h) + f(h)}] + -2

Table 3: 31-(Order Cumulant Structure : The Intrinsically Linear Model

PAR(1)
C(O,O) 2

C(O, T) I [Px,,,'+2 - 2ix,cy_+i]
C(T, T) .21"+2 2- __+1

Pr ,2r,r" tx 0 r

C( 1, 1 + r) r _ " ± ++ + ±+ 2
,,•rp, r+ ) Pxor lXUr+l llx,

C(h, h+-) P, + +l)+lP'Xrr+I -- J x& +i + • + 2__.____,_________. Is 5,,r+h •=•

used as a tool for discrimination purposes and consequently nor can the spectral densities.

To illustrate the shape of the 3d-order cumulant structure, see figure 4, we set

0. p. o ,3. v,1. 2 0.5. First, we observe that certain ratios in tables 2,3,4 and 5 yield a.

clear characterization of the cumulant surfaces. Consider the ratios, presented in table 6, for

the models with a simple close form i.e. EAR(1), TEAR(I ) and Robertson's fixed model.

While such simple expressions are not available for the remaining models it is possible to

investigate the behavior of these ratios numerically. Two of the above ratios turn out to be
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Table 4: 3rd-Order Cumulant Structure : The Intrinsically Noii-Iiiear Models

EAR(1) TEAR(1) NEAR(1)
C(o,o) 2 2 9
C(O, r) 2p T  2a7 2(a3)T

C(7. 7) 2p2 T 2o,"l + r(l - a)] 6A T

+4(a,3)'y•,u•-y(T) - 1]

-(aM))rl-"1(r)} - _Y(T)]
+14,,27A•(7)

('(1,1 + T) 2pT+2  2aT+1(2-a) 2(a)T'+'[3,3 + 21LJ

+-ry 3 (T)Jf[,p + 2j+a]

+-____±0 d + 1) + 1}] + 2

('(h,h + 7) 2 pT+ah 2 a +h[I + h(1 -a)] 6(,3)rAh
±4 (a a)T+h ji¢' ( h )

+2( 00)7+11t2 ' 0;3, Wh)
± (a•-)'I-k-,,2_ (h)

-[2{(ai3)'(1 + (ad)h) +(3)a}

+p,{y-.,(-) +-y,,(7 + h)
+,,3(h)}] + 2

more informative for the purpose of discriminating among the models : c(an) adCi.-)
C(O.T) ('(T,7)

In the simulation context, however, since the cumulant surfaces decay rapidly towards 0, the

coniputation of these ratios become difficult as we attempt to divide by very small values

These numerical considerations unstabilize the use of the ratios as a tool for discriminating

amo!ig the models. The computed ratios ( as functions of the lag 7 ), indexed by a set

of parameter values such that the correlation function of each model exhibits an identical

behavior (e.g. p(*,) = (0. 5 )') are also given, figures .5-6. so to d(emonstrate the shapes of the

expre'sions giV'n in the first and fourth rows of table 6.

Oven the plots of thle ratios and the cumula nt surfaces for the six models we may classify

them into three categories. AHR( 1) forms its own class. Robertson's models and TEAIl(I
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I' blc 5: T'I-r/ erti ( initiiilait. Sixrlticnrc 'Ille iiit~ruisicalIl' Noui-litiea~r Modlels (coil.._)

Robertson's Fixed Model -Robertson's Randomn Model
('(ii2 2______________ _________

C('(0 T) 23IT 2L'p

CT. T) 23'( 1 - rind3) 2,)r[I - 2Tb1,.LV 'I
+(o +I 2)tt4,.[-Y(T I) (T - I )t),ri]

_________ ____________ -Vy(T)[2ni + c]

C'( II + T) 2 3 r_+l( I - it/1) 1

-r[2(2b,- + 1) - (*]

±EI[-I(T) + -t(T + I) + I
-dy()- 2()- I)

C(b(. b, + r) 2 rJ+hl -11 ') pT +

-2gT+11- I ([/h/. + it]

-2 th 10 (T- I ) +4- II

+ QT [( ( + 2)(1,I r{y(iI - 1) - (h, - 2 L" ]

±j( I')a'2 Y( T) + Q)L')

__________+(ILY(T) + - ((- + h?) + -y(h)] + 2

formi a sepa ra~te grou p. NEIAR (1) and( 1PAR1(1) formi an aildit~iola.l class. Notev tiat th le

('111 11111an t sutrl~ace j)10(ltice(I l)V N LAR1(1) is a, coflibatiaoI of' EAR (I) and TE' A R{(]) a I. h~at.

it lookser twi cl like thle suirface 1)ro(l llc(l bY PARl( I). H owever. flie t~wo iuo(lels seetiil

to dliffer inI the iir lwla v or w heuu one observe thle P~lots of I le t, heoreti(a~l rat.ios. (Closer look

at thle vertical ax is f'or N VAR ( awtl PAR (I) inI figures 5 anol 6 shows fihat. thec ranges are

sim -~l an1(1 muich smaller Hitth thle ranges of' thle veil ical axis for the other miodlels.

6 Methodology

InI I lie fol lowi rug we propose a di1scriminat ion procedure that, ma\ be appll ie(l to the ruo(lels

11 t(ler In vest iga tion (3.25)- (3.31) or to any set of competing models.

LEt

NI {I a finite set, of ft nit pa ranuet er models}

190



Table 6: Ratios of the Tr-(r0(ler Cumulant Structure

EAR(1) TEAR(1) Robertson's Fixed Model
C ( r) + (1 - o)T 1 -- rln/3

C (0, h) Ph(bo) Ino)
C'(h, h+rT) 2h- ah[I (-•) O h(j -htO

C(0,7) _____ a_ 1+ hI - a) I- n/3 )C'(I,,+) 2+-i-T i -L-•,,

Sph,h+ 2(h-1) ar-' [l+h(l-o)] Oh- 1(1-h1nO3)
( Il- ) _ 2-a 1--1n .

Our objective is to identify the most compatible model in E M with {Xt}t' . Specifically,

given {jXt}1•, find a model ni E Al such that rn {Xt}=.

Procedure:

1. Compute CI(u lk.... ,uk) . k = 0, 1,2,..., ui E I integer. We call it the empirical

,-h-order cumulant structure based on the data {Xt}t=.

2. For each 7n E Al

(a) Estimate , using Xt1 .tL, the parameter 0m (possibly a vector) for model m.

(b) Compute COr,(Ui,.u., uk) for model m empirically or using the theoretical cumu-

lant structure. We shall call it, Method 1 if the computation of the cumulant

structure is done using the known theoretical cumulant structure. We shall call

it Method 2 if the computation of the cumulant structure is done empirically

based on {X•}> 1 .

3. (Given tile above quantities we seek to minimize, for a norm

Min•EM Il C.(U,...,k) - Co,01(U, . ,UO) H . (6.1)

A Iternat ivelvy,

E,%,, , (A\ ..... 1 Ak) - hf-(A 1. . .Ak) J1 (6.2)
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where fo,, (A,, . .. , Ad) is the k1h-order spectrum (i.e. polyspectrum). The general

distance measure may be specified as e.g.

I1911 S I1gl 2 .
{ u, JES

There are several issues that need to be considered under the proposed procedure. First,

various properties of the model such as stationarity, ergodicity, moment conditions, moment

calculations, parameter estimation and simulation aspects of sample traces must be investi-

gated. Second, statistical properties of the formal test statistics based on (6.1) or (6.2) have

to be studied. In order to do so the sampling properties of the proposed procedure must be

investigated. In the following section we consider the simulation aspects of (6.1) and present

some simulation results for both methods 1 and 2.

7 Simulation Results

In order to verify the possibility of discrimating among the various models on the basis of

their respective 3d -order cumulant surfaces, it. is necessary to obtain reasonable agreements

among the theoretical and simulated cumulants. In the following we discuss issues related

to the simulation aspects of the sample traces, correlation functions, 3 d_ order cumulant.

surfaces and ratios.

7.1 Simulating Sample Traces

The simulation aspects of the NEAR(l) model and its special cises, EAR(l) and TEAR(I),

were considered hy Lawrance and Lewis [20]. The algorithm they give is being used in our

simulation to generate sample realizations for the NEAR(l) family. The subcases, EAR(l)

and TEAR(1). are simulated by setting (o =0.99 , 0 < 1 < 1) and (/3 =0.99, 0 • < 1)

respectively. in the same program that generAtes the simulated paths for NEAR(1) model.
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We follow Lawrance and Lewis in settinig ,he (legcierate parameters to 0.99 so to avoid

complications in the simulation of the traces.

Robertson's fixed and random models are generated by two different programs. One which

allows a selection of a branch with a fixed probability and one which allows the selection

of a branch with a random probability generated according to a beta random variable with

parameters (a, 2). The input signal is a truncated exponential; hence, needs to be simu-

lated accordingly. Since no IMSL subroutine is available we generate a realization from a

truncated exponential random variable using the cumulative distribution function technique.

Realizations from the AR(1) model are easily simulated and no further explanations are re-

quired. McKenzie [27] discusses the simulation of PAR(1) models. The innovation process

t ' is generated according to

V = E'-b(U)

where U is distributed as a uniform (0, 7r) sequence of random variables which is independent

of E - a sequence of exponential mean one random variables. The function b is defined by

b(o) =sin(sina ~)-(sin(1 -

Thus, f Vt is generated as a mixture of uniform and exponential sequences of independent

random variables.

All the simulated paths are generated by FORTRAN programs that call IMSL subroutines

which are used to simulate continous uniform, beta and exponential realizations.

7.2 Simulating Higher Order Moments

One FORTRAN program is employed in simulating the correlation functions, 3rd-order cu-

1iiulant surfaces and certain slices of these surfaces . Smoothing considerations lead us to

simulate each model 30 times where the length of each simulated trace is 1010 data points.
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Table 7: Distance Measure (6.1) - p(s) = (0.25)8

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random
PAR(1) 0.26 0.21 0.17 0.06 0.58 0.40
EAR(1) 0.018 0.015 0.68 0.08 1.40 1.14

TEAR(1) 0.78 0.70 0.018 0.37 0.08 0.03
NEAR(l) 0.12 0.09 0.31 0.008 0.84 0.63

Robertson's Fixed 1.80 1.65 0.22 1.06 0.02 0.07
Robertson's Random 0.73 0.66 0.02 0.34 0.12 0.05

The program computes two expectation terms : E[XtXt+r], over the range of lags 0 to 9, and

E[XtXt+rXt+r+sI, over the range of lags, -9 to -9. Then the smoothed empirical correlation

function and the smoothed 3Td-order cumulant surface are computed using their definitions.

In the computations of the expectation terms we use

1 1001E[XtXt+rl] - 100~ t~
1010 ZXt=

1 1001
E[XtXt++Xt++s] 1+

1010 t=+

In order to determine how accuratly the simulated cumulant surfaces match their theoretical

couterparts we plot the empirical correlation functions, the empirical C(r, r) slice and the

complete simulated surfaces in figures 7-9. This is done for various parameter values and

shown for those that, correspond to p(s) = (0. 5 )s.

7.3 Discrimination Procedure : Method 1

The results of the simulation study are summarized in tables 7-12. Tables 7-9 are examples

of typical values obtained by a single run of the simulation. Tables 10-12 provide the propor-

tions of correct model identification out of 30 repetitions. Note that, in table 7 the diagonal

line contains the minimum values of rows 2-5. This is precisely how we would expect the

procedure to perforrl for any parameter value indexing a standardized correlation function.

However, errors occure at the first and last rows where the method fails to select the correct
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Table 8: Distance Measure (6.1) : p(s) = (0.5)s

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random
PAR(1) 0.67 0.41 0.74 0.02 1.44 1.43
EAR(1) 0.07 0.01 2.24 0.30 3.34 3.42

TEAR(1) 3.59 2.97 0.085 1.39 0.087 0.10
NEAR(1) 0.64 0.37 0.93 0.005 1.67 1.69

Robertson's Fixed 4.92 4.27 0.32 2.36 0.06 0.13
Robertson's Random 2.36 1.91 0.07 0.76 0.26 0.32

Table 9: Distance Measure (6.1) : p(s) = (0.75)s

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random
PAR(1) 1.91 1.12 2.28 0.03 3.07 3.02
EAR(1) 1.82 0.02 6.53 0.85 7.79 7.69

TEAR(F1 ) ,4.14 3.85 0.416 1.25 0.79 0.93
NEAR(1) 1.83 0.63 3.26 0.09 4.19 4.15

Robertson's Fixed 4.82 4.59 0.31 1.63 0.57 0.70
Robertson's Random 9.43 10.38 0.51 5.32 0.24 0.36

model. The PAR(l) model is being identified as a NEAR(1) model and Robertson's Random

model is being identified as a TEAR(1) model. The theoretical plots of the 3rd-order cumu-

lant structure support this confusion as they show that these models produce very similar

surfaces that are hard to distinguish. In table 8 we note that tile procedure fails again

to select PAR(I) and Roberson's random models. Errors occur at the first and last two

rows of table 9 where the procedure fails to distinguish PAR(1), the fix and random mod-

els. The incorrect selection that appears in the above tables is consistent with our previous

reniark regarding the grouping of the models into three categories. Robertson's models and

TEAR( 1) were identified as sharing a very similar 3rd-order cumulant structure and so were

PAR( I) and TEAR( I). Thus. one would expect to have difficulties in discriminating among

1od,'s that belong to the saine family. The pattern established in the previous tables is

consistent in the 30 repetitions we consider in tables 10-12. PAR(1) is consistently confused

with NEIAR( I). and TEAR(I ) and Robertson's models stand out as a separate class. The

random model is by large the hardest to identifv and typically is mistaken for TEAR(I)

Modlel..\It ihoigh the procedu1re is slccessful iII identifying TEAl1(1) and the fixed model it,
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Table 10: Proportions of Correct Identification : p(s) = (0.25)s

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random
PAR(1) 0.0 0.0 0.0 1.0 0.0 0.0

EAR(1) 0.03 0.97 0.0 0.0 0.0 0.0

TEAR(1) 0.0 0.0 1.0 0.0 0.0 0.0

NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0

Robertson's Fixed 0.0 0.0 0.0 0.0 0.73 0.27

Robertson's Random 0.0 0.0 0.7 0.0 0.03 0.27

Table 11: Proportions of Correct Identification: p(.s) = (0.5)s

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random

PAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
EAR(1) 0.0 1.0 0.0 0.0 0.0 0.0

TEAR(1) 0.0 0.0 0.7 0.03 0.27 0.0

NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0

Robertson's Fixed 0.0 0.0 0.17 0.0 0.83 0.0

Robertson's Random 0.0 0.0 0.63 0.0 0.37 0.0

Table 12: Proportions of Correct Identification : p(s) = (0.75)3

PAR(1) EAR(1) TEAR(1) NEAR(1) Robertson's Fixed Robertson's Random

PAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
EAR(1) 0.0 1.0 0.0 0.0 0.0 0.0

TEAR(1) 0.0 0.0 0.67 0.07 0.26 0.0

NEAR.(1n ) F0.0 0.0 0.0 L .0 0.0 0.0

Robertson's Fixed 0.0 0.0 0.47 1.0 0.53 0.0

:Robrtsons Random 0.0 0.0 0.53 0.0 0.47 0.0
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TFable 13: Proport-lios of Correct Ideiitificationi : p(s)=(02)

Robertson's Fixed 0. 1:3.8 .
Rob)ertson's Ran~domi 0.1 0. 1.7

Tablel 14: lPro1orht ios of Correct Idenitificationi p(s.) =(0.5)-'

Robertson's Random 0.30.02

is Ihle (011 hisioln ill selectinig the ra~iilorii model that. makes it dlifficult to Judge the aduiquacy

of EA1~ 1)or t he fixed miodel. H owever, si ice the three models share very similar traces

a~iil 3ri-rder cuniulanti stiructurre one( may choose t~o accept each of the three as compatible

withI all%- of t hat grouip.

To remuedy this problem wve may apply tire proposed (liscrimhinat~io procedure to the lrd-

order cumunlant structure for these t hree m~odIels. Onie may argue that sinice the models share

all i(len~tical 2rd-or(Ier uromnetit. structutre anid a similar 3rd-omder cumulatit structure (but too

similar so their (lifferenices c-anl not, be captured lby (6.1)), theni it might be possible to reveal

their true ideutiittv throughi the use of the 4rd-)rcder cumuitlant structure. Tables 13-15 conitain

the resiilt~s of the simulationi stumdy appliedl to the 4rl-order cumulaitt structure of TEAR( 1)

ai~d 1?olert sonis models. The choice aniorig the models is uiot clear cut as the proportions

Tab~le I5: Proportionis of Correct Identification : p(.s) =(0.7 5)'

__ TEAR(1) 0.63 030 1
VRobertson's Fixed 0. 13 05 .

IRobertson's Random 0.470.7.6
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'Fable 16: Proportions of Correct Identification : p(s) = (0.25)'.

ARE(1) PAR(1) EAR(1) TEAR(1) NEAR(1) Rob's Fixed Rob's Random
ARE(1) 1.0 0.0 0.0 0.0 0.0 0.0 0.0
PAR(1) 0.0 0.73 0.0 0.0 0.27 0.0 0.0
EAR(1) 0.0 0.0 0.93 0.0 0.07 0.0 0.0

TEAR(1) 0.0 0.0 0.0 0.63 0O0 0,03 0.33
NEAR(1) 0.0 0.3 0.03 0.0 0.67 0.0 0,0

Rob's Fixpd 0.0 0.0 0.0 0.07 0.0 0.67 0.26
Rob's Raido[ 0.0 0.0 0.0 0.5 0.0 0.23 0.47

of correct identification are not large enough to enable a reasonable degree of discrimination

power anmong the three competing models. This result was expected to hold given the

theoret ical expressions as expressed through the plots for the theoretical ,IT"-order cuuiulanti

structure, figure 10. In these plots the models are shown to produce similar behavior at

varlilos frames of ('(r,s,u ); thus, there is no reason to expect a high degree of discrimination

power aniong the models on the basis of t lie proposed procedure and the 4 d-order cuinulant

st rcl (It l re.

7.4 Discrimination Procedure : Method 2

In tables 16-18 we provide hle results of our simulation study according to (6.1) based on

the emplirical cuinulani structure only. Note that we added ARE(l) for comparison pur-

poses. Since the marginal miomients of ARE(I ) are different from the remaiting models wc

standarize its riean to equal one so the mftaln of the exponnt ia] innovation process becomes

I - 0. Tlihe higher or(ler nioirents are, not standarized t~o equal those of the exponential

rio'lels. Ihe resuint In tables 16-18 are by large consistent with the results obtained

iUrndher the previou s method. 'Flie main difference appears to be in the improved separation

between PA\( I ) and NEAR (1 ) under tile secorid method while under the first method. which

ivolved t he theoretical cumiulant structl re. PAR( I() is consistantly lvmistaken for NEAHR (I).

We ,ise met hod 2 vit h the I-h-order empirical cumilant strucl nire for TEA R( I ) and Robert-

I, l's Models. The results are siilliarized in tables 19-21. Figure 11 contains the plols of
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Tatlic. 17: Plroportions of Correct Identification : p(s) = (0.5)S

- TARE(|i Pit(1) EAR(1) TEAR(1) NEAR(1) Rob's Fixed Rob's Random

AI ( 0.0 0.0 0.0 0.0 0.0
PAI (I 1.87 W 0).0 0.13 0.0 0.0
EAR( I ) H 00 1.0 0.0 0.0 0.) 0.0

TEARI 1 10 A.. 0.0 0.43 0.0 0.27 0.3---NE - • 1) 4 ,-1-) 1 r 0.0 0. 0.53 0.) 0.0

Rob's Fix(ed H t )o 0.0 0.07 0.0 0.63 0.3
R.oh%. Randol n .)) (W)O 0.0 0 0.3 0.0 0.4 0.3

Talle Is: Proportions of Correct Identification : p(s) = (0.75)s

ARE(1) PAR(I) EAR(1) TEAR(1) NEAR(1) Pob's Fixed Rob's Random

AIRE(1) 1.0 0.0 0.0 0.0 0.0 0.0 0.0
PAR(1 ) 0.0 0.57 0.0 0.0 0.43 0.0 0.0
EAR (1) 0.0) 0.0 1.0 0.0 0.0 0.0 0.0

TEAR(I) -0.0 0.0 0.0 0.43 0.03 0.2 0.34
NEAR( 1) 0.0 0.53 0.0 0.0 0.47 0.0 0.0

Rob's Fixed 0.0 0.0 0.0 0.0.0 .0 0.43 0.34
Rob's Random 0,0 0.0 0.0 0.3 0.0 0.3

thec simlllated 1"-order cumulant structure for the three models. The results confirm our

previouis comment regarding the difficulties encounterd 1y the discrimination procedure in

(list inguishing ariion t. these three models.

8 Conclusions

"T'he prolel,,m of discilinination among non-linear time series models is considered in this

paper through the faildy of exponential models. kn this specific case we are able to develop

lhic lhci)rctical 3rd-order cunmilant structire and confirm it b)y simulation. The procedure we

Ta1)lc 19: Proportions of Correct Identificat ion : p(s) = (0.25)"

TEAR(1) Robertson's Fixed Robertson's Random
TEAR(1) 0.110 0.27 0.3

Robertson's Fi..ed 0.13 0.54 0.33
Robertson's Random .I()0 0.1 0.27
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Tal)le 20: I)roport.ions of (CXorrect Iden'tifrication : p(.s) = (0.5)s

TEAR(1) Robertson's Fixed Robertson's Random
TEAR(1) 0.27 0.20 0.53

Robertson's Fixed 0.23 0.40 0.37
Robertson's Random 0.27 0.3 0.43

Tal)le 21: Proportions of Correct Identification : p(s) = (0.75)'

TEAR(l) Robertson's Fixed Robertson's Random
TEAR(l) 0.30 0.30 0.40

Robertson's Fixed 0.27 0.33 0.40
Robertson's Random 0.27 0.30 0.43

proposc is not restricted to the class of Alt(1) type models or the class of models for which

analytical results for the :3d-order cumulant structure are available. It is a general procedure

wilh the potential for a wide range of non-linear models. It is based in the understanding

lhat different lno(els cannot have an identical moment sequence ; hence, the discrimination

armong thein would become possible at some stage in the higher order cumulant structure.

In our specific case we are able to obtain a, significant improvement in our discriminatory

power just by going one step above the traditional second order moment analysis i.e. the

correlation fiunction. While setcond order moments play a dominating role in linear model

discrimination they are very limited in the non-linear case. When the 2nd-order analysis fails

to provide enough information we propose to apply higher order moment analysis for the

1)11rpose of model (hiscrimination.
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MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND

GOODNESS-OF-FIT

Michael A. Stephens,
Simon Fraser University, Burnaby, B. C., Canada V5A 1S6

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions, and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few, or even all, the moments or cumulants may be found, but
whose density f(z) and distribution F(z), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k

S = •(u,)2 (1)
i=1

where ui are i. i. d. N(O, 1), and Ai are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X 2 statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are estimated by maximising the
usual likelihood, rather than the multinomial likelihood, has this distribution
with some Ai : 1. Other goodness-of-fit statistics, of Cramer-von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be tabulated, for k = 2, involved errors in
target hitting during World War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k, but the analysis after k = 5 or 6 rapidly

218



becomes very difficult. Thus in general it is difficult to find exact percentage
points of S, but the cumulants tc,, r = 1,2,..., are very easily obtained:

=, Z•2'-'(r - 1)! (2)
s=1

2 Moments and cumulants
In this section we list definitions. The r-th moment about the origin of a random
variable X, or equivalently of its distribution f(z), will be called P"; the r-th
moment about the mean will be//,. The moment generating function Mx(t) of
X is defined by

Mx (t) = et X f(z) dx; (3)

when expanded as a Taylor series,

,t 2  pt 3  I/ t
Mx(t) = 1 +Pt + 14 + P +" .+ * +"" (4)

where [ = u' is the mean of X.
Cumulants 1cr are defined through the cumulant generating function Cx (t) =

log Mx(t), where "log" refers to natural logarithm. Then

ic2 t2 K3 t3rt"CX(t) = Xjt + -K-. + K3t + + -IW. +"5C)
2! 3! r

Thus in principle we must find Mx(t) before finding Cx(t).
The following relationships exist between low-order moments and cumulants:

K1 = pJ' = -/; K2 = P2 = 0"2; K3 = P3; K4 = P4 - 3p 2. Further relationships may
be found in Kendall and Stuart (1977, vol 1).

Suppose Z = X 1 + X 2 + X 3 + .-. . + Xk where Xi are independent random
variables. Then a property of moment generating functions is

Mz () = Mx,) Mx,(t) Mx1 () ... Mx (t),

so that
Cz(i) = Cx(t) + Cx,(t) + ... + Cxh(i), (6)

and it quickly follows, using obvious notation, that

K,(Z) = 9,-(XI) + g,(x2) +.-.- + Kxh. (7)

This additive property makes it very easy to find cumulants of sums of inde-
pendent random variables, and hence, for example, the cumulants of S.
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Two important Mx(t) are those of the N(it,or') distribution, Mx(t) =
exp(itt + a2 t2/2), and the X2 distribution, Mx(t) = 1/(1 - 2t)P/2 . Finally,
it is easily shown that p,(aX + b) = ai tp(X), for r > 2, where a and b are any
real constants, and r,(aX + b) = a" ic,(X), r > 2.

As an example, consider S. If X has a X2 distribution, the MGF of X
is 1/(1 -2t) 1/ 2 ; thus Cx(t) = -Ilog(1 - 2t), and expansion gives Cx(t) =

2t2 + a, + i + .... Thus the r-th cumulant of X is tr = 2r1(r - 1)!,
that of AiX is Air C, and by the additive property (7), the r-th cumulant of S
is given by the expression (2).

3 Mathematical approximations

The approximations in this section are called "mathematical" because they are
based on mathematical analysis, with known properties of accuracy and conver-
gence, in contrast to those to be considered later.

Suppose n(t) is the standard normal density

n(t) = e-2 / 2/V/ (8)

and let f(x) be the (continuous) density of X. Then it is (nearly always) possible
to expand f(x) as

f(z) = n(x) 1 + I(p2 - 1)H2 (X) + P3 H 3 (X) + 1 (P4 - 6p! + 3)H 4 (x) +...

(9)
called a Gram-Charlier series. The H,(x) are Hermite polynomials. Lists of
Ilermite polynomials, and also conditions for convergence, etc., are given in
Kendall and Stuart (1977, vol. 1).

The basic technique involved in deriving (9) rests on the fact that Hermite
polynomials are orthogonal with respect to the kernel n(x); thus

J0 Hi(x) Hi (r) n(z) dr = { , i j (10)

Then if f(x) = i cjn(x)H1(z), multiplication by tHj(x) on both sides, and
integration, gives

ci = f(x) Hj (z) dxlj!

When worked out, c2 = (P2 - 1)/2, c3 = P3/6, etc.
If an infinite set of moments is available, as for S, the density can be ap-

proximated very accurately using a Gram-Charlier series of sufficient length, but
there are many statistics in practical applications for which it is difficult even
to get the first four moments - see Solomon and Stephens (1977) for examples.
There are two other important drawbacks:
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1. A k-term fit might, at any one value of x, be worse than a (k - 1)-term
fit.

2. Gram-Charlier series with finite numbers of moments can give a negative
density f(z), particularly in the tails.

3.1 Percentage points approximation

A Gram-Charlier-type expansion can also be found for F(z), the distribution
function of X; this can be inverted to give a percentage point for a given cumu-
lative area cr. Thus suppose F(z 0 ) = a; we want an approximation to z.. A
Cornish-Fisher expansion gives z - t as a series in Hermite polynomials in
z, or (more practically useful) in t, where 4 is the percentile corresponding to
cv for the normal distribution, that is, 4 is the solution of

00 n(r)dz = a. (11)

Again, problems can arise with the convergence to the desired Za. For more
details on mathematical expansions of Gram-Charlier or Cornish-Fisher type,
see Kendall and Stuart (1977, vol. 1).

4 Pearson curves and other systems

We now turn to a method of approximation which can be thought of as "laying
one curve upon another" - the approximating curve has parameters which can
be varied to make a good fit. The parameters are usually chosen by matching
moments or cumulants. Percentage points of the approximating curve, which
are tabulated or otherwise easily found, are then used as approximations to the
desired points.

A family of approximating curves is the Pearson system, where the (contin-
uous) density f(z) is approximated by f*(z), given by

1 df*(z) _ a+z

f(x) dz bo + bi + b2z
2  (12)

According to the values of the constants a, ba, bl, b2 , integration of the right-
hand side will take many forms, giving great flexibility to the system of den, sties
f*(z). With considerable algebra (see Elderton and Johnson, 1969, for details),
the constants may be put in terms of the moments:

Suppose A 1 0 P4P2 - 18p3 - 12p2; then (13)

S143(P14 + 3p2)2a A (14)
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P2(p2P - p2)
bo - A 3 (15)

b = -a; (16)

b -(2,2P4 - 3p 1- 12p2)
b2  A 3 3(17)

Thus knowledge of the first four moments or cumulants of X will fix the con-
stants above: a further constant C enters on integrating, but is fixed by the fact
that the total integral of f*(z) must be 1.

4.1 Percentage points

When the constants are known, the density f*(x) may be integrated and per-
centage points solved for numerically. Over the years, this was done, at first
very laboriously, for a small range of possibilities, but a quite extensive tab-
ulation was made, using electronic computers, in the late '60s. These tables
are in Biometrika Tables for Statisticians, vol. II. The form of the tables is
as follows. The percentage points for X, the standardised X-variable given by
X = (z - p)/l, are plotted in a two-way table indexed by the skewness and
kurtosis parameters g3, and /2. These are defined by

2

'3 =L and 632= P4 ~ (18)
P2 P2

they have been defined to be scale-free, and • takes the sign of/j3. /31
measures skewness: a large (positive) VT, means the curve is skewed towards
positive values (long tail is to the right) and vice versa for negative vF•. A
large /32 (always positive) means the density has heavy tails. Of course, all
symmetric distributions have /31 = 0; a benchmark to measure kurtosis is the
normal distribution for which /32 = 3. Since ,C4 = 04 - 3pj, the parameter
72 = /32 - 3 = K4/IC can also be regarded as measuring kurtosis, with value
-2 = 0 for the normal distribution.

Suppose, for a given S, we have V = 0.8 and /32 = 4.6. To use Biometrika
Tables, one enters the appropriate VT table, V/I = 0.8, and travels down
the left-hand column until the /32 value, 4.6, is reached. Along the row are 17
tabulated percentage points for X, from a = 0.00 to a = 1.00. Interpolation
must be used for V , /3#2 values not explicitly given.

4.2 Un peu d'histoire

At this point, perhaps, it might be permitted to enliven the account with what
the Guide Michelin calls un peu d'histoire. At the time Biometrika Tables Vol.
II were being prepared, I was fortunate enough to know Professor E. S. Pear-
son, then retired but still very active, especially as Editor of Biometrika. He
had collaborated with workers in the U. S. to get the tables (Johnson, Nixon,
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Amos and Pearson, 1963) and had carefully compiled the full set by hand. HIe
had introduced me to Pearson curves, which, to put it mildly, did not figure
prominently in statistical training of the day, and had shown me how effective
they could be. He gave me a copy of the tables to use. I undertook to write
a Fortran program on the IBM 650, to interpolate and find points, given the
first four moments. All 20 tables were then typed onto punched cards; in the
end, I got it down tr" ,. Droximately 45 minutes per table. This is not such a
dramatic piece of history as Michelin usually provides (assignations and assas-
sinations often play a prominent role), but a diminishing generation of modern
readers will still empathise with the fears of losing the boxes of cards, getting
them wet in the snows of Montrdal, etc., not to mention the awful discovery of
a wrongly-typed number!

Since then, programs have been written to integrate the density equation
for f*(z,) numerically and to solve for xa for given a, or to provide the tail
area for given x; one of these, kindly given to me by Amos and Daniel (1971),
has been added to my program; this greatly increases the range of P, and /32

for which Pearson curve approximations can be found. However, points are
still output from both the Amos and Daniel part of the program and by the
Biometrika Tables part, ostensibly as a check where available, but truthfully as
a sentimental tribute to E. S. P.

Later on, Charles Davis and I (Davis and Stephens, 1983) added to the
program to enable a fit to be made using knowledge of an end point (for example,
that the left-hand endpoint of S is zero) and three moments. This is especially
valuable for the type of statistic for which each successive moment requires
exponentially increasing hard work - for example, the distribution of areas, or
perimeters, of polygons formed by randomly dropping lines on a plane - see
Solomon and Stephens (1977). The Pearson-curve fitting program is available
from the author.

Further developments have included algorithms to facilitate use of Pearson
curves -- see, for example, Bowman and Shenton (1979a, 1979b).

4.3 Accuracy of Pearson curve fits

(a) Pearson curve densities are unimodal, or possibly J- or U-shaped, but never
multimodal. They are also never negative.

(b) Percentage points or tail areas found from Pearson curve fitting have been
found, for unimodal long-tailed distributions, to be very accurate in the
long tail, at least for tail areas bigger then 0.005, or the 0.5% point.
Pearson and Tizkey (1965) discuss this issue; Solomon and Stephens (1977)
give comparisons. (In making comparisons, one must of course compare
the Pearson curve fit with the correct z,, or the correct area for given x,
for a distribution which is not itself a member of the Pearson family.)
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(c) Davis (1975) has made extensive comparisons with Gram-Charlier fits using
only four moments. Pearson curve fits are better than Gram-Charlier fits
everywhere except for distributions very close to the normal, as measured
by the 131, 2 values.

4.4 Other systems

Johnson (1949) has proposed another family (divided into three parts) of curves
defined by four moments: for example, the Su curves are those given by the
relation

S= y + 6sinh-1X (19)

where X = (x - p)/lo, and 7, 6 are to be chosen to make the distribution of
6 as close as possible to N(0, 1). A discussion, and tables to facilitate the
calculation of -y and b, are in Biometrika Tables for Statisticians Vol. II. Other
authors have also proposed families of distributions, but they have not come
into such common use for the purpose of approximating percentage points.

5 Use of higher moments

We now turn to the first of two interesting questions - can higher moments
be used to improve the accuracy of Pearson curve fits in the long tail of the
distribution? The long tail will be supposed to lie to the right, as for the
distribution of S; then, since higher values of x will contribute more to the
higher moments than smaller values, we might suppose that fits using higher
moments will improve accuracy. Unfortunately it is not easy to establish the
four constants in terms of higher moments - of course, only four of these would
be needed to fix the constants. A recursion formula exists to generate higher
moments, for r = 2, 3,...:

rb 0 r_1 + {(r + 1)b1 + a}lp + {(r + 2)b2 + 1}14+1 = 0 (20)

In this recursion, the constants a, b0 , b, and b2 occur, and this means that one
cannot reverse the recursion and generate, say, p and (72 from P3,P4,ju5 and I'6.

Nevertheless, one can generate the fifth and sixth moments of the Pearson
curve with the same first four moments of, say, S, and compare them with the
true fifth and sixth moments of S. The first two moments are then slightly
changed, and the procedure successively repeated, until the third, fourth, fifth
and sixth moments of each curve match. This will mean that the mean and
variance of the Pearson curve will not be exactly the same as those for S,
although they will be close, and this will probably make a worse fit in the lower
tail; but for higher x the fit could improve. I have made some comparisons using
this procedure, but, as one might expect, there appears to be no systematic
improvement. In discussion, when this paper was first presented, the suggestion
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was made to use Least Squares to make "closest" fits, in order to compare the
six moments. More work is needed to compare Pearson curve fits along these
various lines, but it is not likely that the improvement will be sure, or will
extend to points far into the tails. In the end it must be remembered that one
curve is simply being laid on top of another, with only four parameters to vary,
and there is no mathematical analysis that will guarantee accuracy.

Other methods for developing accuracy in the extreme tails include numerical
inversion of the Characteristic Function (essentially the MGF with it replacing t,
where i = v'T), or saddlepoint approximations. A method due to Imhof (1961)
uses numerical inversion for distributions such as S, but the computer time
needed increases rapidly as the distance into the tails increases (to give small
tail areas). Field (1992) has recently examined saddle-point approximations for
S. These would seem to give more promise of tail-end accuracy in the long run.

6 Use of sample moments

The second interesting question is: how accurate are Pearson curve fits when
sample moments are used to make the fit? In the earliest days, this was the use
to which Pearson curves were applied - to find a smooth density to describe
a set of data, such as lengths of beans, or width of skulls. Kendall and Stuart
(1977, Vol. 1 ) gives details of such a fit. In general, the Pearson curves will give
very good fits to a unimodal set of data, or even to J-shaped or U-shaped sets,
but it is important to assess the accuracy of extrapolation from the sample to
the supposed population from which it came. More precisely, we ask how close
the sample fit estimate of, say, the upper-tail 5% point is to the true population
5% point, and, further, whether or not the Pearson-curve point is better than
the estimated point derived from choosing the appropriate order statistic - in a
sample of 1000, the 951st value in ascending order, or in a sample of size 10000,
the 9501st value. Some investigation of these questions has been undertaken in
two quite different ways, by Johnstone (1988) and by myself (Stephens, 1991).

The accuracy of the Pearson curve point will depend on:

1. the sample size n,

2. the a-level (tail area) of the point required,

3. the true skewness and kurtosis of the density approximated,

4. higher moments.

Johnstone gives a small study, for samples from populations with the following
range of parameters:

Ii~ 10.0 0.0 1.0 1.0 2.01
32 3.3 4.0 5.25 6.0 7.5
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Johnstone gives plots of the estimated coefficient of variation, CV, of the
Pearson curve X- against - loga• , where the base of logarithms is 10. Thus the

CV of the estimated xool is plotted against 2, that of the estimated zo.oo, is
plotted against 3, etc. The coefficient of variation is estimated using a Taylor
series approximation. As one might expect, the CV goes up markedly as ct gets
smaller (so -logce gets larger on the x-axis), and the steepness of the rise is
greater for the more skew distributions.

In Stephens (1991), Monte Carlo samples were taken from populations for
which exact percentage points could be found, and the exact points were com-
pared with those obtained from (a) Pearson curve fits using the moments of
each sample, a. ! (b) the order statistic estimate from each s•imple. The order
statistic estimate 'vill be asymptotically unbiased, while one can say nothing
exact about the poi,.t obtained by laying one curve on another; recall that sam-
ple moments, especially the third and fourth, are extremely variable, even for
quite large samples. The results showed, as expected, that the Pearson curve
points were more biased. However, somewhat surprisingly, they had smaller
moan square error. Therefore, it might well be preferable to use the Pearson
curvw points, although, again, more investigations should be made especially if
the points required are far into the tail.

7 Goodness of fit using moments

In this second part of the paper, we discuss how moments are used in Goodness-
of-Fit, that is, to test whether a random sample comes from a given (continuous)
distribution. The distribution will often have unknown parameters, which must
be estimated from the given sample.

7.1 Tests based on skewness and kurtosis

Suppose the r-th sample moment mr about the mean is defined by

M, = n Z(Xi - ) (21)
i=1

The sample skewness and sample kurtosis are then defineU by

b , = 2 b2 = -a. (22)
24

These statistics are not unbiased estimates of f1 and 32, but they are consistent,
that is, the bias diminishes with increasing sample size. The sample skewness
and kurtosis are time-honoured statistics for testing normality, having been used
in a rather ad hoc manner for most of this century; b, is compared with zero,
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and b_ with 3, the value ')f /12 for the normal distribution. However, distribu-
tion theory of b, and b2 is difficult, and it is only since computers have been
available that extensive and reliable tables of significance points have existed for
these statistics. F'urther, b, and b2 can be combined to give one overall statistic
(d'Agostino and Pearson, 1973, 1974; d'Agostino, 1986). For other distributions
Bowman and Shenton (1486) have also given tables for these statistics. Stud-
ies have shown that skewness and kurtosis, especiaily combined, provide good
omnibus tests for normality, although less is known for other distributions. For
the important discrete distribution, the Poisson, all cumulants are equal to the
mean, denoted by the parameter A; a time-honured test for the Poisson is
based on the ratio of sample variance to sample mean, which of course should
be about one. Again, this simple statistic appears to compete well with others
in terms of power.

7.2 A formal technique based on moments

Perhaps because of the variability of sample moments, which makes calculation
of significance points difficult for statistics based on these moments when calcu-
lated from samples of reasonable size, it took some time to formalize a technique
b;,sed on moments. Gurland and Dahiya (1970) n nd Dahiya and Gurland (1972)
have however devised a general procedure. The essential steps are as follows:

1. X vector ( of length ,s, say, must be found, whose components (i are func-
tions of the theoretical moments, and such that each component (i is linear
iL, the parameters. (This might involve re-parametrising the distribution
from its usual form).

2. The estimate h ofC is obtained by replacing theoretical moments by sam-
pie moments.

3. The test statistic is then based on the difference h - C.

Suppose that, r is the covariance matrix of h, 0 is the q-vector of unknown
parameters, and W is the s x q matrix such that C = WO. Then define

, = (h - W ) '(h - W),

where 0 - (W'E-1 W)-'W'•-h. The statistic B is the regression estimate of
0 obtained by generalizcd least squares, and E is E with the estimate 0 used

wherevetr 0 appears.
Giirland and Dahiya (1970, 1972) showed that, asymptotically, the test

statistic Q0 haw the X2 distribution with t = s-q degrees of freedom. Currie and
Stephens (1986, 1990) have studied the procedure, and show several properties
of Ot. Among these ;,re the fact that the test statistic Qt can be brokLn into
t compon-nts, eali with asymptotic distribution X , and each testing different
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features of the distribution. Each component is a function of moments or cumu-
lants. For example, consider the test for normality, that is, for the distribution
N(p,,r'). Gurland and Dahiya (1970) took C' = {(,logP2,P3,log(p 4/3)}, so

1 0"

that h' = {fx,logm 2 ,m 3 ,1og(M 4 /3)}. The matrix W is W = ]and0 0 ,n

0 2

0= [ 2 ]. The test statistic Q2 becomes 61+6 2 , where the two componentslog a-•'tocmoet

are el = nm3/6m2 and 62 = (3n/8){log(m 4 /3m2)}. Thus the method leads to
nbi/6 and (3n/8)log(b2/3) as test statistics, equivalent to the "old-fashioned"
b, and b,.

However, it should be noted that the components are not unique; they de-
pend on how ( is formed. Currie and Stephens (1986, 1990) discuss these
questions in some detail.

8 Components of other goodness-of-fit statis-
tics

Other goodness-of-fit statistics also have components which are functions of
moments. The oldest of these was proposed by Neyman (1937), in connection
with a test for uniformity.

A test for a fully specified continuous distribution (that is, all parameters
known) can always be converted to a test for uniformity by means of the Prob-
ability Integral Transformation, and a test for the exponential distribution can
also be so converted, even when the scale and origin parameters are not known,
so that Neyman's test has wider applicability than it might at first appear. (For
details of these transformations, see Stephens, 1986a, 1986b).

Neyman's test is as follows: suppose the test is that Z has a uniform distri-
bution between 0 and 1, written U(O, 1). On the alternative, let the logarithm
of the density of Z be expanded as a series of Legendre polynomials:

log(f (z)) = A(c){1 + ciLj(z) + cL 2(z) + C3L3(z) + -. .- , (23)

where the ci are coefficients, components of the vector c, Lj(z) is the i-th
Legendre polynomial, and A(c) is a normalising constant.

A test for uniformity is then a test that all ci = 0. The estimates of ci are

i= ELi() (24)
j=1

where z1 , z2, z, is the given sample.
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The first few Legendre polynomials are best expressed in terms of y = z-0.5.
Then

LI(z) = 2V3/y, (25)

L2 (z) = v5(6y 2 - 0.5), (26)

L3(z) = VT(20y3 - 3y), (27)

so that the estimate a, becomes a function of the first moment about the known
mean 0.5, the second estimate 62 becomes a function of the second moment, e3

a function of both the third and the first moments, etc.
Neyman shows that the suitably normalised 6i have asymptotic N"), 1) dis-

tributions, and his overall test statistic is the sum of the squares of thes. n(,,-
malised estimates. Thus the overall statistic has an asymptotic X2 distribution,
just as for the Dahiya-Gurland statistic, and the individual terms, based on
moments, are the components of the overall test statistic.

9 EDF statistics

Another important family of goodness-of-fit statistics is that derived from the
Empirical Distribution Function (EDF) of the z-sample. This family includes
the well-known Kolmogorov-Smirnov statistic and the Cramer-von Mises family
of statistics (for details and tests for many distributions based on these, see
Stephens, 1986a).

One of the most important of the Cramer-von Mises class is A2, introduced
by Anderson and Darling (1954). The definition of A2 is based on an integral
involving the difference between the EDF and the tested distribution F(X) (with
parameters estimated if necessary). The working formula is

A2 = -n - I 1:(2i - 1) [log z(i) + log(1 - Z(n+l-i))] , (28)

where zi = F(zi), and z(i) are the order statistics.
As an omnibus test statistic, A2 has been shown to perform well in many

test situations.
Anderson and Darling showed that the asymptotic distribution of A2 is,

like S of Section 1, a sum of weighted X2 variables. The individual terms
in the sum can again be regarded as components of the entire statistic, and
Stephens (1974) has investigated these components in some detail. A remarkable
result is that they too are based on Legendre polynomials, so that they are
effectively the same as the Neyman components, based on moments of the z-
sample. There has been some investigation of components of these and other
statistics, as individual test statistics for the distribution under test; references
are given by Stephens(1986a). As for the Gurland-Dahiya components, they can
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be expected to be sensitive to different departures from the tested distribution.
The complete test statistics of Neyman and of Anderson-Darling combine the
same components, but with different weightings.
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Abstract

Hligher-order statistics (I1OS) are now very widely used. Two areas where they
begin receiving considerable attention are array and speech processing. This paper
describes some recent applications of IOS in both areas by the authors [19]-[20].

In our speech processing application, we demonstrate a way to better discriminate
between voiced and unvoiced speech. This is accomplished by observing the behavior
of a cumiulant-based adaptive filter, and makes use of the fact that unvoiced speech is
Gaussian, whereas voiced speech is definitely non-Gaussian. We have also shown a way
to utilize the prediction residual from the adaptive filter to estimate the pitch period
for voiced speech.

Array processing encompasses a multitude -f problems, including beamforming
and direction-of-arrival (DOA) estimation. We have developed fourth-order cumulant-
based blind optimum beamforming algorithms that outperform existing methods. The
term blind indicates that our methods do not require a priori knowledge of array geom-
etry and DOA. nor they are affected by multipath propagation and presence of smart
jammers. Extensive simulations support our theoretical claims on the optimality of
our beamforming procedure.

1 Introduction

Our work on speech processing describes a method that consists of an adaptive predictor, a voicing
decision (V/U\), and a pitch period estimator. The focus of this study is on robust detection of
speech state and estimation of pitch period. This is accomplished by observing the behavior of an
adaptive predictor which processes the speech signal. Iligher-order- statistical analysis is proposed
for discrimination of speech slates. Comparing the energy of the original speech signal with that
of the prediction-error residual yields the decision method. Both covariance and cumulant-based
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prediction methods are investigated and the latter is Jto wn to be a more robust way of making
V/I'V\) decision. Pitch estimation is accomplished by iiing correlation-based approaches that

operate on the energy estimate of the cumulant-based prediction residual rather than the original
speech signal. Pitch estimation by our method yields l)•eltter performance than currently exiAting
bat ch procedures.

Array processing work, as described in this paper, addresses the problem of blind optimum
beamforming for a non-Gaussian desired signal in the presence of interference. Sensor response,
location uncertainty and use of sample statistics can severely degrade the performance of optimum
beamformers. In this paper, we propose blind estimation of the source steering vector in the pres-
ence of multiple, directional, correlated or coherent Gaussian interferers via higher-order-statistics.
In this way, we employ the statistical characteristics of the desired signal to make the necessary dis-
crimination, without any a-priori knowledge of array manifold and direction-of-arrival information
about the desired signal. We then improve our method to utilize the data in a more efficient man-
ner. In any application, only sample statistics are available, so we propose a robust beamforming
approach that employs the steering vector estimate obtained by cumulant-based signal processing.
We further propose a method that employs both covariance and cumulant information to combat
finite sample effects. We analyze the effects of multipath propagation on the reception of the desired
sinal. We show that even in the presence of coherence, cumulant-based beamformer still behaves
as th1 optinlur) beaniformer that maximizes the Signal to Intcrferci,, - pl-s Noise Ratio (SINR).
Finally, we propose an adaptive version of our algorithm. Simulations demonstrate the excellent

performance of our approach in a wide variety of situations.

2 Cumulant-Based Adaptive Analysis of Speech Sig-
nals

Voiced/Unvoiced (V/I'\') decision is an important problem in speech processing. Almost all speech
coding, recognition and speaker identification systems require this information for an effective
processing of speech data. In addition, low-delay speech processing systems require this decision
be provided in real-time. In [2] some commonly employed features are described, and a subset of
them are use(d to train an artificial neural network to perform V/UV decision.

In frame-based analysis of speech signals, feature extraction is performed on the current block
of data. and a decision is given at the end of the period. For this reason, frame-based methods
are incapabhle of tracking rapid changes in signal characteristics. Transitions of the state of speech
within a frame period affect the decisions resulting from a frame-based analyzer. In general, this
mixed state of speech within a period can not be identified and incorrect decisions will hei made.
This will degrade the performance of the overall speech processing system. In addition, frame-based
analysi- Introduces delay, which may not be tolerable in low-delay systems.

Seere non-stationarity observed in speech signals and low-ddlay requirements of the contem-

porary stpc.chi processing systems motivate the use of adaptive algorithms for feature extraction
in place of their batch counterparts. In general, adaptive processing techniques are designed to
inimmiie sonic least-squares error criterion. Their use is motivated by the assumption that the

procsss, are (;aussian and the performance analysis is tractable with this assumption [3]: how-
ever. this approach ignores the non-(aussian nature of the underlying signal.

A(iaptive prediction of tle incoming signal and continuous monitoring of prediction error power
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Figure 1: Typical spee(h signals: (a) Unvoiced speech.. (b) Voiced speech.

Ilakkes dt w ting chtllipges in the spectral characteristics of thie process possible. WVe may consider
"sic h a cht ang asn rt( tit. After an event, an adaptive. init, will require a period to adjust itself
fr the, new configuration. Du, ring this learning period. prediction error power will temnporarily
iimcreas(,. This observation was used in '35], to detect abrupt changes in the autoregressive (AR)

par;a meters of a linear process. If a lattice form is used rather than a finite impulse response (FIR)
filter, reflection coeflic(ents will be available for monitoring purposes. In addition, adaptive lattice
fillers exhibit bet.ttr leariiing characteristics than their FlIR counterparts. This may improve the
;bililtv to localize tlie event when predict.ion error power is monitored.

II this srd v, we shall investigate the application of adaptive prediction methods to detect
Vi/ V transitions in speech signals; hence, events of interest will be V/"V or UV/v transitions.
On r approach will take the speech iproduction inodel into account and uitilize higher than second-

ohrder statistics of speech signals.

2.1 Speech Production Model
lhe, state of speech signal belongs to three categories: voiced, unvoiced and silence. Silent periods

can b1, doto<cted easily bv mnonitoring zero crossing rate and energy of the received signals [53]. For
his r, a son,. we shall con(4,ntrate on voiced/unvoiced classification of speech.

'nv nced sonids are generated by formingig a constricntion at some point in the vocal tract
and forci,,_i air through thli constriction at a ihigh volocitv to produce turbulence. This creates
a bro;,J sp,,etrmn ioise soilrce to e'xcite t he vocal tract. The energy conrceiitration is shifted !,,

lie, Il,,, frequency eend ofh tie specdri in for iinvoiced sounds, b~ut the specdruni is relatively flat
Xlie , l miip nilred with that of %oicod speech. Due to large num ber of random effects involved in the
,rohittm ,ri univoiced ,poeech. (;aussian noise is a valid candidate as the excitation sonrce. This

a;slniiiftiior ik validate'd I \V,,ls 1731. 1I his work, the bisp(.ctriirn is tiscd to make V/i'V decision.
Ih ha bee, fn lorid that bispect ruin of English fricatives tend to iero, buit for vo•wels the sitiiation is
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Figu re 2: Adj acent samapie correlatioln of speech signals.

just thie opposite. Atlypical unvoiced segment of speech is shown in Fig. I a.
Voiced soiunrds are pridced by forcing air through thle glottis with the tension of thle vocal

cords adjusted so that. t heY vibrate in a relaxation oscillation. thereb ' prod ucing quasi-pleriodic
pul ses of air which excite the vocal tract. This excitation is clearly non-GCatissiani. The enorgy
concent rat ion is in the low-frequency side of thle spect rum in the form of a fundamient al component
arid its harnmon ics. Iii adldlition, .voicedl souinds have more energy t han uinvoiced1 soundr~s. A. tvjtical
voiced speech segment is shown in Fig. lb).

For voiced souinds, thle vocal tract can be. modelled as an all-pole linear syst emf. The sanme model
also holds for uinvoicedl soundns lbut the All order is less. Correlation lbet ween adjacent sam ples 'is
hiighi for voiced sounrds. On the other hiand (, in voiced speech resemtbles whitite noise sinice its spect runt
is re-latively' flat. y ielding sniall correlation between adjacent. samples. C'orrelat ion seqmences for
VoicedI an uili nvoiced cases are illiust ratedl in Fig. 2.

THie d iffereinces ili thle excitation a no correlation properties for I liese two cases c'an be uised to1
dliscririnirate bret ween thIem; however, withI second-oroler statistics we call only use thle correlation
piropert ies bu1t. can not uit ilize thle information abount t he excitation nmodel. Trhis mnotivates thle rise,
of hig-her-order cuiriularits of speech signals.

2.2 Our Approach
Ill the jrrevioiis section. We linent ionted thle distinct ionls between voiced aiol tiiivoiced sorinlds: coire-
jarion] allmonrr ad Jarerit sarir oles and excit ationi models. Ill this sect it,. we shall investigate met lto(k
Ihat frilly u tilize this informiationt.

Lnear prediction (1 P ) methIodls are em ployer I t o accomniplishi our goal: hiowever, we shrall iiot rise
b at cli-t ' ye iiiethlods foir reason s outlined prey iou sly. Lineia r prediictiori can he based on secooid(-or
lriglir-orler- statistics, however the forrmer is usually employed . Linear p~red(iction is essviitiall'y
6lenilying~ tIleinvrs of a linlear Ssystiri dri\ven by white noise: hience, it, ca;n be corisirlered as' ;I
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'vternI ideritificat ion probleni. The sv,.teiii unde~r cowusolrat ioin, (d o heapproira td I an A I?
Modlel. so anl ITll predlictionl filter will wiliten the spect rurnI of thie iricojiiuig Wiia.\e "h~ad

hinvetigate the differences bet ween cnii iiilalnt-anid onarva nafce- iasCe ala pt i X pred jt oW miethd Iioll
thils section.

2.2.1 Second-order statistics based adaptive filtering

- ( 'Correlationl-based aila1 tiv-e predict on ji~tfers ti ton lo inimiziie lho proichli(ll 'ron err. owi'at tIll,,

outpu~it of the filter. Since correlat on among adjacent sam ple is hiighi for %oiced sigiia Is. we, "a;

remove a large proportion of energy fror'i t Ie original speech signal usinig pre'dictionl. Oil the other
hiand, in the case or unvoic( soundi(s, LP~ will not Qe t hat srccessful duie to suiindl morrlat loll m ui

samnples. Therefore, a comnpa rison oft lie ii pt sign al power with IN liepwer tn lie prodirkt in i'sd ii
will reveal the state of the sp~eech sign al.

Lattice predlictionl filters enable m101 tonitoing thle %aii at ion of p~redliction error powvv wit i i ;ioilei

order due to t heir specific struict ure. Ant oregressiP yeiodel-u~rder-select ion canIl be Iperforin('( by
selectig the tap which results ini unnimuni llr(dictiou-error poer This le;-os to another dis-
niminiiiation bet ween v-oiced anid ii n voiced Sounl ,11 sinlce thins order will be relat ively lower for tIh

unvoiced case.

2.2.2 Fourth-order statistics based adaptive filtering

Ini t Iiis section, we shall invest iga te the )liaviaor of a founrthl-orMercuniuilant - baseol adapth M ell r.

An adlaptiv.e algorithmi for est itnat i g the pmaranieers of noist at iona r ARH processes~. excited by
lion- Ga ussiani signals is proposedl in [65b} anid some niodi ficat iou s are suggested in [22]. We usedI

lie method of [65hJ, which is in thle software package Ilii - Spc Ot(tradeýniark of I' uit d Sign als
and Systems, Inc.) [33]. The idIeas for the covariaiiue-blasev filt er dilrect lv apply to thins case withI
one inmportant exception: the cumiila lit-Iasedl adlapt ie filter p~rovidles thle soluition to thle cii ii Ilanlt-

based normal equathios. andI this solut ia is not the one t hat n11111 izlis t he Ijredict ion- error power:
however one may argue that if tihe speech piroul ict on system ran hi e idenifitfed accu rate(ly. thlen thle

p~redlict ion error should be close to the miiimllm possibale valule.
With higher-ordpr statvistkw(5 we have thle diversity of using thle xltathion ifrniation: IOf

voiced sounds1 , thle excitation is Ilon-Galissian: heince. the, speech produict ion mechuaniisri aili lbe
(dentified0( by ruimulant -iasedl ARH equations. Onl the othlen hianid. LW rinvoiced souindos the exultat or

is Gaussian, mnaking thc id~cnti'iation )poblitii iHl-po,,d1 Ir cunii1lahit-ll(Ps( adaptit'( filt( r will
Pnot bc able to idcntifiy thc sJstf In and, sinre there is no aissocialted oiitl~ut-I)oi( ri- 11 ninni,-t lot

criterion. prrdiction-( rror power may arbitrarily jiicroeas( Ini this case. a cuii nulant -ba'std filteor mia '

(wxen am plify t he speech signal nlaki ng thle powxer red iu tion by lrod Ic lol coimparnison moore, clear
th ani when using a cova ri anlce-hIa sedl met hod.

1T) valitate our ideas about covaniince and~ (ilunilaut- baseN adlliv)x lpredt AIono 0peYA si sgrak.
we-( performed some experimlents using dat a from th liT IM Ii Fspeechi recognl itl dala (fat I;e. I iw
resul ts v-erify ouur claims and1( are pnox'ided in th linuex t section.

'A ciiniilant-based filter p~rovidles the solution of ciiniulaiit-hasedl ipiorial equaclo 'ins an ii ;dnp Wh flim.i

Ii wve.Ihis set of e'iihA1011 becoiics I rivial wheii 014e input i(.) be iiav,' ýi ("iiiaslln linear J'rorteý..

because higher than ;ternd-ordqer cuuiuilauit, (if (auj:, protrý-o-' art, 7ero
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2.3 Experiments

We start our experiments by investigating the prediction performance of correlation-and cumulant-
based linear predictors in voiced speech case. An indication of performance is the energy of
pred iction-error residual at the output of the filter. For this purpose, we selected a voiced speech
segment from the TIMIT database and performed adaptive filtering based on both correlation and
cumulants. We expected that the correlation-based filter would yield better performance, since it is
designed to minimize prediction-error power. The original speech signal is scaled so that estimate
of its variance is unity. The results of this experiment are shown in Fig. 3. Energy values reported

in this figure represent the estimate of the variance of the signal averaged over the data window.
Interestingly enough, the cumulant-based filter performed better than its covariance counterpart,
although the latter is designed to minimize the power of the prediction residual. We repeated this
exleriment with other speech segments and in all of the cases, cumulant-based filter outperformed
covariance-I)ased filter.

In voiced speech, a conventional system identification approach for estimating the AR param-
eters• using a least-squares fit procedure. suffers due to the nature of the excitation sequence. It is
known that, for voiced speech. the source is definitely non-Gaussian ; it is quasi-periodic in nature
wit h spiky excitations. The impulsive nature of the excitation in voiced speech is exploited in [40],

by making a Bernoulli-Gaussian assumption to develop a multipulse coding scheme. In [39] , a
robust linear prediction algorithm is proposed which takes into account the non-Gaussian nature of
source excitation for voiced speech by assuming the excitation is from a mixture distribution, such
that a large portion of the excitation sequence is from a normal distribution with small variance
while a small portion comes from an unknown distribution of higher variance. Such a distribution
is called hcavy-tailcd Gaussian. Based on the above mixture model, a linear prediction algorithm
is devised which employs robust statistical procedures ( developed in [34] ) that operate in a batch
niode. Although satisfactory performance is observed, the method can not track the transitions
in the in put data. This points out a very important fact : conventional linear prediction can be
unsatisfactory due to incorrect modelling of the excitation. Of course, this carries over to the

aladptive domain, i.e., a correlation-based adaptive algorithm may not be able to yield the best
possible fit in the presence of outliers in the data. On the other hand, a non-Gaussian excitation

is required by higher-order-statistics-based identification algorithms. A cumulant-based adaptive
filter is able to reduce the pover in the signal by effective prediction. although it is not based on a
criterion for minimizing the power of prediction residual. Power reduction may be even more than
that provided by a covariance-based filter due to the just described outlier problem.

To atalayze the behavior of adaptive predictors in voiced and unvoiced speech states, we selected

a 250 insec period of speech segment in which there are two transitions: voiced (0-75 msec), unvoiced
(75- 190 iusec) and again voicedl (190-2.30 msec). This signal is shown in Fig. 4.

We use(d an order ten predictor for adaptive filtering of the speech waveform. Figure 5 shows

he, predict ion-error from a covariance-l)ased filter. Observe that an adaptive filter based on a
power mnninimization criterion will turn off during the unvoiced period: hence, this segment passes
undisiorted through the filter. The reason for this (as explained previously) is the small adjacent-
saunple correlation for unvoiced sounds which makes the process unpredictable. To minimize the
out put power.tlhe filter turns off; however, during voiced segments deconvolution is successful. We
o)bserve a quasi-periodic pulse train for the prediction residual, which is in accordance with the
excitation model for voiced speech production.
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Figure 3: Energy comparisons. (a) Original speech signal; (b) prediction residual from
(ovariatlce-based filter; andl (c) prediction residual from cumulant- based filter.
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Figure 5: Prediction residual from covariance-based adaptive filter: (a) first 125 msecs, (b)
last 125 nisecs.

IFigure 6 depicts the cumnulant-based filter residual. During voiced periods, successful decon-
volution is possible since the excitation is non-Gaussian, and again a quasi-periodic pulse train is
o)bserved at the output of the filter. Now, however, the filter amplifies the speech signal during
Ile uinvoiced segment. As explained before, during this mode of operation, the system identifica-
tion task is ill-posed, and, since this filter has no power minimization criterion, the power of the
pre(diction residual becomes higher than the unvoiced speech signal.

To make better comparisons concerning the energy of the original speech and prediction resid-
lials, obtained via the two different filters, we illustrate the energy estimates in Fig. 7. Energy
is estimated tby first squaring the signal and then performing low-pass filtering using a 15 point
Hlamming window. Fig. 7 shows that, by comparing the prediction-residual power and the original-
signal power. it is possible to make reliable V/UV decisions. With the cumulant-based method,
een better results are obtained, because it amplifies the input data during unvoiced periods.

The ol)servations from this experiment, validate our earlier statements; however, using a predic-
tor may bring additional advantages as well. One important by-product is pitch period estimation.
Pitch period is the time difference between the quasi-periodic excitation pulses during voiced speech.
A\fter the V/diV detection step, better pitch estimation is possible by operating on the energy esti-
mate of predict ion-residliial rat her than on the original speech signal. From Fig. 7, we observe that
the peaks in the energY estimate se(luence are spaced by a pitch period during voiced periods and
they are sharper than the ones in the original speech signal due to combined filtering and squaring
operations. (onsequently, we may apply the correlation-based approach described in [18] to the
,,nergy estimate sequence, for a reliable., simple but robust calculation of pitch period. In [18,] pitch
estimation is accomplishe(l as follows: low-pass filtered speech signal is quantized to three levels:
-I.0.1 and Ilie correlation sequence of this quantized signal is obtained. Covariance calculation is
simple with the quantized sequence, since it can be performned only by addition. Finally, a peak-
picking met hod est imates the pitch period. Peak-search is perform(ed on the possible range of values
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2.4 Conclusions
Ili t Ii. wor\k. w~e shiow~ed t imt it is poss fibe to track transitions in the state of speech using adaptive

('dl p IO I Oil. Tot i cov\a rianice and cumiuilant- based niethds are investigated, and greater
coill ni~tl~e bweetl \ /V cases is (teliloll. st rat ('( by the la~tter miet hod because curmulants canl use

t t.dlfre uice ill Ike excital ioni miodel of' I lie t wo speech st ates.
Vit l~li-pvrioI est i iiiat iou is also jpos.,,ilv by linieai prediction. Rather than operatng on the

oti"jitihll >illwe' p rifi to eiiiilo Ike predct owN-eor residual available from ail adaptive filter.
ii llliali - a~,dpproatcl operaiathg, oil thle power estimate of the residual process is showin to be

;I p[ act ical Way of' pit ch esa nliat ioni.

We iii vestiga ted( thle predfictilon performianlce of adaptive predlictors based[ on correlation and
4i MHN Iili anid fi ni that cii iiilaiit- haspod predfictioicn (:ailot perform correlation-based prediction.
tliloii'(Il ilie fattlet i., (fi''Iiled to mninimiziie tke power of the predictioii residutal. %We conjectured

fith~it llthers ill thle excit at ion afloef of vo~ced l speechI result iii t his phenioniena. Better piedic-
lion1 performniice oht aitied via cii nii1lila. us wort Ii ivest igatilig aiialyt icarlly:. however, this is not.
tlciabl f.withI r''al or i vithlesized speech silice t he're are( miany parameters involved. Simpler cases.

>,iiCf aý aI snugle 'ýiili.-,ojd ini (;u~ia ise canl he atnalvzed to evaluate the performance of'cuinnulant
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t[ea ra 55.721 :II iwmever. I I ns is niotI a pi tact ical thing to do, since calib rat ion must be done quite
freq nellily li.a d(. ea~l tlI i i. a ira * V- ma iii[O01( iiiforinat ion mutst be stored. InI addition, calibration
SOIiii('e iiiaY lbe reitiiiri'il lveii smiall errors in the calibration procedure may considerably degrade

lie( perforiiiaiice. Seiisit ivitY aiialvsos of' high- resolutionli met hods and MVD R heamformling have
lillil pre~l'lit ('( ill [1 1.12, 141.(i24-25,29.70.716].

Inl lit-, st iid , v we Thial ire'ploY higher-order statistics of received signals to estimate the steering
vector of, thle 1liin- Gatssian dlesired signial inl the presenice of directiona~l Gaussian interferers with
minkiiow ii covaria ice st rtiictire. We assuiiie It0 knowledge of array immanifold, and DOA information
a Inlil thle (ls elsignial. D esi red signial In a h e voiced Speech, soniar signal. r-adar return or a comn-
inli Vat ion signtal. lit (Iiii work, we( sp~ecial ize to thle coninituxucations scenario. which req uires thle
151'4 (Of f iii rthl-order c.1iiii iilaits. Followving a mnatheinatical formulation of the problem in Sectionl 3.1,
we" de4scrihe bliliid est iiiiat ioi aiidl opt~iililliii heamiforininig procedtires inl Sectionl 3.2.

AiiYv.est junit ioul procedulre is suibJect to err-ors, as is our cuinulant -basedl source steering vector
estuima tioul mlet. 10(. Ill t heor ,v, ctinmulawlts are( blind to Gaussian nioise: however, their estimates are
C"lrrlilited( bY Stich nloise. Ill order to obt aiii s'atisfadt orY resuilts, longer data lenigthis axe necessary ili
ClIII IIIIa lit - bas.ed sIgiia I processinig. Ti alleviate tOhw elfect s of' est imat ioui error in the beaniforninlg
si ep . weo propose a uuiieelhicietilt est illiat ioul procul mu re that fuilly uitilizes the data acquired by the

ara.We fur .t herI si iggest a I iiet hiod of, corn 1)1 hug cilininnlanit and covariance informationi to yield
better et ilna tes. I'liuil we eiii ploy, a rolmust beamfortuing metho b1 a~se(] onl artificia~l noise injection
II cili bat ii misin at c Iil iiitlie 5(ili rce st ce ringp vector. W\e considler the est iniation error ats a mismatch

aiild sin cesshi 1k a pplv t lki robuist approach to on r problem. These methods are plresented in
Sect onl 3i.3

hi i in (.i) im] iict W lii e(Itli viroil nilict . inn It i path Iiprolpa~gatimiiahniost alw~aY's take pliace. In this case.
all lindciipotio-bsdtechl)iiiqies aiild MlVIDl fail. Oiilv ill 5011W specific array configurations

I t pos'sihbli to (l~m-ellrlate hiioiiiiig sigiials anid tleiit est inmate their DOA's. 'We analyze the
blia ~viir oi f ()li r iii iii ilait -blasedl ap~proachlitii Sect oio 3.4. W'e show that 0n1r p)roposed approach

hwliavves its fl( ii1 )tiiiiiiiii beatiiforiiier t hat Itiaximnizes the Signmal to Interferen-ce plus Noise Ratio
(SINU ).

IFor re~il-t i iiie (iheirit Oil (;I iiece'Ssaiv reqtilrienieit ini coiiinunica~t~ios ap~plication.-,) we propose
atl i dadiptle 1ildipleuileutat ion of* tlie( cuiliiiilaiit-based beainiformer ini Sectioni 3.5. We then present

1111 ti iitoil eprilitsto inidicate Ilie performlanlce of ouir approach ini Section 3.6. Finally, we
draw loml ioiichlisioiis Ill S,('ctioii 3I.7

3.1 Problem Formulation
We foriiiilillte o1111 pruhb'iii iiialal it ha iiwbild fasliihoti. Ill a rrav lirocessilig, a problenm is classified as

Iitiior w ha id ilt' lie bit il ha dwid ti Ii s sniall comnpa red to tlie( reciprocal of the time required for
Iliesua wavef~roiit iil propagatle alcross t lie array, . For' a (liscuissoiil oil banidwidth, see [60.63].

Ill onll l ruilmt (ion, lower anld lijiper case italic lettlers ate iisedl to represenit scalars, lower case
bol C11 ilut let tersý are( 1iseil fir veclto(rs. aiid. tipiper' case hold font letters are uised for matrices.

3.1.1 Signial Model

insi~derl ;III aIri*Iv ofl \lei'lillit. wit1 Ii atbitlal rav sen sor, responise characteristics and locations.
.\--aillll 1 here ale .1 l as ilr mte fee ice signlsl i1,(1). 1 1.2....I 1}. and a nocii-Gatissaian
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desived signal d( t) . centered at firequeiti:* u-, Wec assume sources are, Gil ima Wav Jilll l ilt arity So~
I that a plantar wavei'ron a pproxima t jot i., possible. The additive noise Preselt1 Is alss im jed to be
( a s.,iatt with tunknown icovariantce. W~ithI these a~ssu~mptions. the recei v-d signal alii Ow kll senlsor.
cal he iw xpre'sed. at.

* t.1 t te it ic ( i (,-an a of thI e wa vefromit corres ponin hg to emtiit ter x.

* a, t,) espot t so of' Iti t( Oli seits(ito xthI signal w~ilvefroitt. including the phase fact or asso-
alitt \%ljilt tie I L i v l iiii oft Itoe -ionial wavelroitt with respect to a referenice point; wit hout

In>>, of t,etih 111t t S poini!(t cit lbe t aken as thle first sensor location.

* di 1) I tlie dtlestrIl iot( -onaIti iiil at, received at wcitsor I. with varianice (T2

* 1 I I Ie ji11 i it lOr toter\vavetoitt it., received at setisor 1: jitter lerenice signals are assuimed
11) he tttemtl of tic (l4c-;red >iizit;tiL ait l they are( Gaussian pi-oce.ses.

@ i /;,t it ll itili ll \1 ll imi ;tit itho ki ll I t.ot t iu. a

2t, a(- it a (f I t +~6 2 t) (2)

liew a~fl(9- rei~rC,,VhI ill( .11te\l tcI erim', \ect or f'or the( wavef'ront t'rout emitter x, which can be

(1,11do le ur-nul ifri~d at Ilwt collec tioul of st eerintg vectors over all] IOA \ ofhinterest. Alter-
liii?\4 iO xprefioiS IOI lor tiel received >igutitl vec(-ltor are.

ri I = A z( f) + n( ) =a(O91 ) d( t) +- A, i(/I) + nt)t (4)

lii thl ltV ke- vpexju.esiot. wepartitionted tlie( .lNxJ A- 1) steering niati-ix A as.

A = [ a(Oftq). A, 1  (5)

toir tie I t 1 x.l tiat rI II Al is, I tt lie I~ >t ittg tiat rL. for interfer-ence sources.
Int Ii> PIPOI.'~ \\I ,'Iddti -ir lie' plobhleit of opt iulitit heanittlOrmittg withI ani artay' of sensors whose

itild tcti>recoittilet ely mitkiimwit: itetice. although we may have a priori knowledge
Itml1o, direct iiat-ot-1,itrial of de-iied signtal. we call tnot per-for-mt heatfoitiing due to the lack of

* k it ~~ l otI -tfiat ait\ a1ý11,11 li dd-I 23i. tii p roblemi Is itd((1ressed: however,. [23] s. algorit hmi is limited
inlt tretie-eti~I.We ilivest Igate the 1 iossibilit~v of' a mioie gener-al solution: namlely.

etvvIll It-c pt-settee at un1itple lilttrfeiers vltos horrCOHlaioti i~ nuictrir1e is unknown. Before
* jr-set nt~wit api()iproo \Il.c'hid .- tmu iher-order statistic>, we demnonstr-ate the limitations of
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3. 1.2 Covariaitice- Based Approaches

( ii rreztly lused hligh resol U tioll lllt'tlo( of DO)A estimation and minimumn-variance distortionless
N'sp' ns) lwS'hatzforminiig ( MVDI) emlploy the covariance inatrix of signals received by the array. The
wavefroit. c'ovarianice mlatrix, 5, is (lefinled as the c'ovarianice of the source signals as received at the

S =t{z(t)z/11(M) (6)

w hen' (.),, den'lotes5 (0111plex ('oiljugate trlanspose. Using the receivedl signal model in (4), we can
expl)'(ss t he VxM ovarianlce iliat nix R. of allay mieasu remlents in the following two ways:

Rt = e r(I) r11(t) ) = ASA" + R~, = ~ a(8d) a11(9(j) + R. (7)

\VIIIlv( It.,, is th II' oist' ('0varial1ce' imatrix.

'11. It,, R ý, t Ito' (ovitlialw liellat l'ix of' t hel undlvl('i1Qd signals. i.e..

RI,,,2 ' [ A, i(t) 4 11(t) j[Al i(t) + n(t) ] }(9)

lit t-ecrl'l(' th tn' oik coval'lazlcc mai~trix. Rt,, is iunknowni. With some( res~trictionIs oil arraY ori-
('11ait I nidul ulimis' covarianlce sti 1(w.11 II ojuv approaches for high resoluztioni DOA estimiationi are

pwn~dill [,17..72] 1 hat do 1not requj~iret this iniformnation; however, these techniquies have their limni-

liti ll. i~Ilie to( inivo lved ass~l imptiolis. l~vell with Comnplete knowledge of noise covariance structure,

"Mi il't h localizationl iM still ilt jossi bleI Withlout. t the knlowledlge of allaty manifold. lIn 156], ESPRIT
uligorit iil isii devi..ed tIA over-olziv t his pl'obl)el1 however, ESlPll1,1 re(Iii~ires transitionally equiv-

alenit siiladl'l'dvs WithI kniowni (ispla('(llivillvet or'(l.ls, Which ma.Y also be imnpractical due to all the
colist ldilits oil al~i Va "ei('llt aioll. Ill [21]. dli 'g'le'll)Stol a'l bo(amlforlillng app~roach is

jwi(Ipl.l'( Whllsl li li('M Ilthe idi(lit ifialit of theii sign al sulbspac(e anld a va~ilab~ili ty of the steerin~g

v('Iol o illformlationl for t li signial of' ilatelest. Good( result~s wvelt obtainled udi.e these assutt11Iptions;

llowever. t his ilill(' 1( cadll not hiandlet l'ohltl-vllt iliteliferellce alit! spatially coloredl noise.
lit [9 1-757] , blind1( ('sIimiat iozi of stte'illng v('('lors for ill(Ieelnnlent emnitters is discussed with the
ioli I l hg('1(1iolMlh

Mf ind ('Mt i iln o )1(f soilrlce st en zig vectors is not. possib~le with only second-order
.stat ist ics. biut I'llipio ,Vilg higher-I liall-second~-ol'der clulnilalts, it is possible t~o estimlate

soilr-c( st(eI'ilig v('ctot's 111 to at s('ah(' factor.

VIM NI)l eailltformntiig is all altt(''latt, iij)I cl'diI for signtal recovery. Thlis ap~proach however,
('9111 [' kilowi(lig(' (If' th "le' t '(flig veil or fot' t in' desirevd soilrc(' up1 to at Scale factor and u~ses the

lVIHlcaillc( filiat nix H. ()f r'e i('iv siginal" fll'. pt'oc(ssilig. 'Ilit' otitj)llt of the NMVDI? be-azuforulel' Y( 1)

Idt -I iI/ r'jl('MI( 3,~ R- H,)I"rl o

\01o' til'he iltdl .1i is U I'sf'it 1() Illailit dill a spe'cified response for the de~sired signal and w

till111' .liI(','t (''uIl'I'SsiolI. it Is ('i(al. t hat MlVlII Ibealllfol'lillg r('(Iiir('s knowledge of a(0,1).
I 1(11 ~il l~it(t~'(I i 'idmhdliifolll. it i~ 1101 possibivt l'(lllll'a ,)etl ill t.Ii' (as''oflknown
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MNI \ ) ltalllloilll(' is quile( seiiitkvI ye to(rIs inl assiiiietl 5(lmino (Ht o and lirhactt'rstics [ii-

II lialiv appllications. iii'i1ltipath pr iopagationI takes place resullting ill collereint sources. (Colter-

('lce p rvsi'>('l I> "i rioll> prohletii to D)OA lijet hod5 : it leadls to a sintgullar son rce covariance mnatrix

S. 1Uo II lic it is [lot possible~ to ('st iniiat e sou rce locat ions except ini sonic specific array contgura-
((I, IsN 19.6 1-62M667 75. In t hie NWI\ )H case. source coherecyi d (oes not rep resent a problem as

lln'tl, as thereI( is 11o souirce correlatedl with t lie (desired signal; hlowever. thiis situat ion is rarely miet
il pracicet(I. Ini ge lie ral tilie (desi red signal is subhject to Il tlt ipat I propagation. andl perfortnance
i4 i NI) H a p p rach degrades sev('r('l [AUI S]. An opt nnu Il eam oinri ng procedunre has been sug-

'ste 1(i ll [(;] to overcolli*' thle colieretice pFoh~l('ll by using a linear a rray of elenments wvith identical

We a re t lierefore look il gt, for a Iniet hod that ('anioverconie all Ma iseproldells. In the next sect ion,
wi' pl(wmllt all a pproch t hat accoli plislies T his hy conihini ug ciiin ilaiit -base(I blind esthinatioun and
NI \ I) bea i'll Fornllligl'

3.2 Cumulant-Based Optimum Beamforming
Ill I lie p~revious> sect onl. \k' discllssed thle problenm of opt ininni bealllforuinitg and concluded that it
is lot pissibld to re'cove'r a des'ired signal ill thle p~rese'nce of inllutiplt' interfereu-s. unknown sensor

1115' (iarlallcl'. 11111k ipathI propagation1 anid wVitholit an iv nlforuiiat ion a bout array inauiifoid. Iii
this s'ct ion,. we propos'' a Inethod1( to overcoille t hese probfleill>. W\e propose a tWvo-stel) proceduire:

Ili~ll -rdr-t a i~tIcfor blind1( estilllat oll ((ftlit' source si ecriig) vector. followved ivy NVDR beami-

tlolllltiI liase' oIl >ý('(ohbil-(irler stlat ist ii of, ie(''iveti signals an~d h>te'ilig vetor estoiuiate p)rovided

bcy tie first ,te'p.

3.2.1 Estimation of desired signal steerhig vector

Ill thins seliotim. \', e ('lllloy culliullanlts o received signials. to estilmiate the steeriuig vector of the
d(',ilo'i 111)~l up o a conlstant factor. Iiiird-order clullullailts are blind to signals with symnilietric
pnioba bilit v deuisit ll 1cliotol. Oil t lieother hanud . hlost signals ili corn niulmlicat ionl environmilents have

t f w t or(1(v-it / 0-,/i ic t (ill. wh1ich opert Iae tIll' 1( i froun i-rerctlllal .Frtw dfn

C1f = /,h"fj Ij, 1 f. 1 ().~() 1. 2.....I. (12)

A,' -'uggisued ill [ 13W. 1114i4.'re ,i varioii, xkavs i,(f delni iig foimrt lu-order stat it ics of ctlliillex randomn
Iiiha's's Wefolow Ill' approach pu('i''uitI'I ililI ill ( 12). Silice itier fell' ce signals are iideptii-
ofil Wi te desired sigiial and~ t lwI' ll' ( ;aulssaiiI wkith hfi-ll foullithl-order. ( ull1lulalnts., wve can ('xPITrss
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I sinig jprOperte. ( )f E E C 111111 Idlit s. ,%v (l tilt

in "Oi(~)l u' "(J a I u( Oj) (14)

~\lieE' '.j e liiote. tilt' 21/0/lh hll, Ill tie jolurfh-orde~r ('tiilulant of t he d~iedj'~ signal. D)efining

1' ~~ (1,1 hJ) ~I~ j E iave I lie 1i 4llowin ge'x pressioni for the .1ix1 vector c:

c = 12 a(fl, ) (15)

Observe t hat thle vect or c is ait /)/ tlfl( oj I/o t rilU/ig .(101 f flth (it sid (s Igial ap to a1 scal( factor.
W\e show ill filie nlext section hlow this jihifrijlittion cdli he lisedl to recover the desired signal.

3.2.2 Interference Rejection

WithI tie kiiowlevlgE ()fEl ti erseEimi2 v'c~lm ()rI, Ilie desired signal. inlterference r'ejection is possible
1,111g, I lie oloii 1,0liilit(m-Vdidi(" iliýt(itrioIlIe5lv('sJ)0115E'n fninulahtion: find the wveight vector
w t hat iiiilIIIIIIIzvs tie limer\~'. w 1 l R w. at Ilie ouldptt of thle lbealuitOrtier sub ject to the constraint

NO C = . wvhore C 1, EEbI;it~diliE'l fill, cuhe iiiiaiit -lasedE e'stjimaijoni pro'eduire describ~ed in Sub-
s4'Ct(Eloi 3.2.tI. The' ohitimEi 1(i this (4)t iimtd (iio p~roblemIE'l iswe'll-kniown.i [8]. adul canl le exptessed

w .,,, R- 1(R c (16)

\\ f IE[E tic 11,11> ali 1~ cC
1

- 1 1, lie'sent Iii oirder to maiinitdili thle linear consttaitnt.

Dill' 14) I li'((lis cm i Ailit Wi C I.1(4w E\\''l lo,1ini (lu/at (ii prloedt'{h d ((oe's 1101 (cancel the desired
bil ;11(1lal lilt E'lIE'VE' 11(4O C()HllliwilEltS adu~ ,('Il-,or liois(' Ill t liE best p~ossible mannuer. Note

Ihiit t1lii., ., is (IItiIIJ)Ishlled( W61itloii klIE4WlE'io(,' of (ovil'idli(( -;trlict ilr(' of iiiterference signals. sensor
J()i.E ((V il lrdt\ Ilihidlo)h 1(. li tie4 E'(ieywL . E' rtlti 44v to lie hrocE'ssior inl ( 16 ) as (U Ml. The proof

111;11 tli is Ii lii ihit it bIrd5'lbiiiI 4 1' hidIli'ii (l 1(E Ilie maximumiii i SIMI prlocess~or is provided1 in
,E'4 I (li 3~. 1. liE 'l(' thle'g li l i iiiilt Euliii cdSE' i 1, 1l'E'ld I(

3.3 Robust Beamiforming

IlifilIli -'' (elifm. we' tiist 14144145'4 dii apprlallici thliit wlit hies tIlE' re'ceivedl dlata Ii tile estimation of
1114' .4il' sIvlE4llii \vc4144 Ill ;I l1imp, ('El1iE'itii manniler. We thieti suggest a miethiod that iises both
(lii IaIl~l> lIý,ad 44 (ViI i 4 i1411d 41(Ii h''lild E' sEeilI i naillv. we enIpll oYv a robulst met hod
14 444 4( i lt t1E 114, ' tIl. 41 E"I lli (d i ('11441".M

3.3. 1 Efficient ( I iliza loll of Array Data

(Itill jpr#4'lol] #441 ( '~'t 144 \\4' ;14''i4E ol 14441 (El ()IWinid E'vtimalioniE of tilE' lv'sIredI source steering

144 1A144114l O 11(44'~ r le d'v l 11a: Ow4 p'Ei.IlE'14(14454' applroac'h Is, rat her limflicieiit Iin the sense that
44It t, 1114 1i~ "'cli'ml I- lieit a l" l 4''E it,4 4'. I'm1 oxi Ill iflel. Itt It( l mie llhiciti l lollf om t his element to thle

4(44 ''>44 1> 4(414I. 1114(1 tilt, ( .Illliatkl~u 4lflh4'l t%." Cilli 1iI(t be accomplish15!edE. Siniillarlvy. (Ile to poor
i(t t1:11112 I (((lilt I\ t414\ o lhi .11;tlle\4'4'1i'1l . tw re'Vl4l(l(livl' stgiail miay he vet' noi. 10sy. (legradinig

1w idl?4 111; 1t IttIl' '. i 44. \4'4II44: ho'1 441 4 M i lE's'. (Iif irli 411I's biY usinlg 1111l1t iple referen'ice e'lemen'its.
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Di~ehim h e miatrl\ C with the ( k. )thi element,

A Ui{)~) HL' t)) r 1(.1r(t)} where k, I = .Al. (17)

\It Ih rite statistics, I Ilie c r055-cu iinla lit mnatrix C Will have rank 1, since all its columnis are scaled
riiplica>s of tw lid(esiredi source steerinig vector; however, witli sample statistics this condition never
Iholds. [Ilie left sitligular Vector of C witli the largest singular value call be used as the estimate of
the do-'sirei source :t eering vector remtovinig the effects of noise. lit this way, we utilize array data.
i( 10' effic ltenýt. 'Iv 'Vlie bea informler t iiat em ploys the steering vector estimate ob~tai ned in the way

dest i- bed above is refer red to as thle C U NI2 beamiformier in tie sequel.
Ill adilit io., t lie Total Least Squares algorithmi, that takes the errors in both the received data

(4 vit rid tice lilatIrix estjtimtaIe andi the steern tg vector estimate into account, is a better choice for
(()IIII filtip, tilie Opt] III itt i weight, vector. as suggested in [781, but it, is compuitationally expensive.
If exlra I olitti ltat ions. are feasible, we sitggest the use of the Conistrainied Total Least Squares
algo rl hitlil [I]. for evenl bettl letiiitetical results.

3.3.2 Covariance-Cumulant (C 2 ) Approach

III -oiiie arril y Iproce('>iiig appl~icatiotns, wirsor iioise covariance ý.triicttre has a definite structure
I'lalltliiig ai whit enligl" lperatioil oil t ie received data. The p~rintcipal eigetivectors of the covariance
iii atri x 4) t Iiis d o4ss'l(at a reveal the sit bspa~ce span ned by thle steering vectors of dlirectional

-ag asiln iiiitangI he a rrax' [5x] . liettee. I Ite steerinig vector est imiate ob~tainted by the cunlulant-
ll1s4'll ;Ipirotill call) he illi prmvell bY projectinug this. estimate ott thle siubspace spanned by the
pliniiial t'igo'iel\I urs, of .IlIe( covai'iaiice tiiatlix. 'Iblis improved (estimnate c'ati thtmt be used in the

boil II riii jig1" p(wll u kre of Sect ini :3.2.2. Thle itiotivat ion behind this approach is that Covariance
4 ila' xhlbith less ''a riatice t ha i cutilt itlaitt estimates. butt in t he cova riance dlomain we canl not

I4idolif ']I's'res 'nigvc ri hr t tt tipesucs his procedure y ields anl estimnate of
Ill,' sIc ~'iiig vevto i roiiii covarliatice- mlat rix ilitoititatioti by etlitjloyitig thle cunuiniant-based estimate
.. idc ii FormIlat iol..A iiiat itetiat ical descript joii of t his approach i.- Jplesetitedl below:

1. Fliniii th iiio4e'ved il (Ia . est jiiftite Il covartatice mtatrlix R atti the desired signal steering
VIIIfm Ci 1)by thll' iiiiiilitlit-batsii prtocedureif.

2. 14 'f ii iýii 4'i#iill(-)i'lljos-it l(II of tilie sailipie covartaitcv tuat ox. t~o reveal tuie sign~al anid
11 4~4 sil~si,4 >:111f,4iIiiic 1 of R \0it iitlie repea~tedn ittittititititi eig)('tvlaiitl -,pall IIlie Iloise

.lils~ill \01 wj1' tIlI( rest sp th timsgnial sitbspace.

3. 1 11vils 'IIi'' jga~l siibspai' is (.1 d-I)(itlelisiotia. 1'h'ett. tHell basis vect~ors for the signal
slil~siac'. omi aii' flotil till' eigetid~coiipositlioti p~rocedure. c.atl be sorted( in anl .Xx( .1 + 1)

I Pi4
44l It,(I 1I Iflillilil ledal stel ilig vector, (esl ittate c. oil t in' signtal sttbspace to obtaiti anl
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3.3.3 Robustness Constrainit

AiLv estimiation procedIu re is inevitably subject to errors. MV DR beamforming is extremely sensitive
to iiiisnilatch [11-12,1-1.1(6,29,70,76], especially in high SNR conditions and in arrays with large
mitiiier of elements.Avariety of constraints have been summarized in [681 assuming perfect
knowledge of element c Itarac teris tics and locations; however, in our case these methods are not

appllicab~le since there is no available information about the array manifold to design effective
coii st. rain ts.

Errors III thle steering vector estimate result in signial cancellation. This mismatch condition,
arising front iioii-erfect estimation. (anl be viewed as the problem of optimum beamiforming with
an array of sensors at slightly perturbed locations. In [15], a method that constrains the white
noise gain of the p~rocesso~r is proposed for the solution of the latter problem. In this section, we
use the sanije approachi to alleviate tHie effects of estimation errors in cuinulant- based optimum
hbfa III foriuliig.

InI order to understand the misinatch problem and find a way to alleviate its effects, we need
lo aiialvyze the probleii analvt ically. Consider flie power response of a beaniform-er with a weight
vector W, as at funcmt loii of DOA 9. definied as

P(O) 1W a(0)1' (18)

%it Ii a(09) denioting tOlie steering vector for anl arrival fromn 9. The derivative, aP(9 )/dO, can be

21?( w1 1 a(9) [ W 1  (9) ] (19)

Now oiisider the following scenario: we have anl M~VDR p~rocessor looking at 0,, which is the
v.\pec~tedI DOA for t li desi red signal. lnst ead, thle source illuminates thle array from Od which is

(,ery (lose but] not equal to 9,. Ili Othis case. thle beaniforiner treats the desired signal as interference
aid l1ulls it: hlowever, dule to thle distortioiiles~s response constraint for 0., and since the angles are
v#'rvY close. tlie (lerivat ive OP( 9)/00 must be large in magnitude for- 9 between Od and 0". From
lIlie dlerivative expressioni ( 19). It is c'lear that this 'Is possible only if the norm of the weight vector

in rases si Ic leiner lprodluct. W1a( 9). aiid. the dlerivatives. j a11(0 921~I are bounded. Ini
isit n6,,Iiat ion. 1. lie ('onst raint is, maint alined by increasing the angle between the weight vector and

ie It( [mk-d irect ion st eerinhg vector. TI' is phieniioiieiia wa~s explhoitedl in [77]. for tulning the beamformner
to acqulir, at weak des-ired signal ili thle priesence'~ of striong interference.

w a flietfi* %Oltv noise ai)hification factor for anY Processor with Ia weight vector wis wHw:
henlce. tho lie ii n ii phienloineiia (can bhe prevented if thle white noise level at the processor is sufficiently
hli igi "o) ht~ll olipi powe h~lr oniiiiiiii iza tioii crit erioii Ilimits the increase Iin thle normn of w . This can be
athi Ivedo( by pert il-ile nhiglie covar namce iiiat rix est iniate of array mneasu remnents by a scaled identity

Rp R 1 (20)

li414 1s a ilonl- ega1t ye pan-a iiiten. which adjusts I lie si nengt Ii of pertuhrb~ation . Alternatively. it

i, psIm,ýdbe to coili at tsriii curtiuolSN 1. S-N 11, definedl as,

Il~2 S N I? - 1 1 log 0 ( ) (21)
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Wue thele (let erilli lie the wýeighlt vector ats.

w R7 (~)(22)

Areceti tniethod p resenl td ini [15] perklritis t his p~rocedurtie inl anii aglJtive fashmio by a simple
scalinhg ofr lie( weigh t vector. lit our rase. we do not have sou rce D)OA iiiforinaltioii but we do have
an estn m ite of thle st eerintg vector. It is thierefore possible to use this estimlate ill place of a(OG,) ill
(22) to formiulate th lit' i iilinlallt-bitsedl proc essor with limfited( signial miulling prop~erty.

3.4 Multipath Phenomena
1K geidcoii ~~ t ol -l~aedIiigli-resol itti(11 methlods [4.17, 26-27 .3(i,.38,5(i606-61.69,71] have proven

tohe elfvlec k Ii y eall or ) obtadiniing beairinmg est ila t es of far- field na rrowvband sources front noisy

tilea~suileiit 1cus. Te1w perlor~llitlanceof t liese algor-itlillis iss e-eylgra(ied whieni coliereice is present.
SSev-eral Illethlodls hiave beeii p~roposed to solve t.hle cohierent sigiials prob~leml with restrictions onl
a rrayv get iiie ry [IS- 14Y.6 1 -62 .(66.7 1.751: howevr, with Wlak of know ledlge of arriay ' v anifold it is not

pos"i b he to solve thle co liereiie p''hrobl)em i.\ LVI) Iileanif orlini~g also fails to) performl optimnally'.
\%hieii iiiterler('mice signlaL, are correlatedl with Ithle dlesiredl signial [5-1.78]. llt somie scenarios, even
Ilit toiiveiit joial lbeai Iltforimier outl)('rforiiis thle NIVI app1dlIroachi duie to) signl. canicellationi in the
\ V lIM beailliformiler.

lit Sect ion 3.2. wev siowved t hat lie ciiiiulaiit-based lbealiuorlller is not aflected by the pr~esenc

of, ~ ~ ~ ~ ~ ~ si iilrlcalol"itreil sign a-Is as long ats I hiey are not cor relatedi withI the dlesred
.signal. [lie sailie is ;lot posý-sible for high- resolmution D)OA- estIliatioli uiethlods: but, the MVDR
hea [Ii Ifornlir mlay perhornil equally well frthledesire~d signal steering vector is knowii and a satisfactory
o~linate ofR is, aivailable. liit hlis sect ion, \weskow that the cuiu"Amil-based appIroachi is hot, affected

by lilt presenice oh' u11iult lnith propagation of thle desired signal. Ill addition, we show that the

\\ith thle presence ofiiuilt ijathI propaigationi or Stulart jalmuining. 0111i signal model in 1I) changes

1A( I) = d(t1(I) A (Ock(( /1 )i-+ a tk( 9  i(i) + 1)k() (23)

or il \eilor orll

rmOj,) atj (1() + Al1 i(i) + n(t) (24)

\%her" lihe set if sca ha I., /............q }/ colist ilt e thle liulit ipathu coefl'iciit s for an L-Way scenario.
Ilie, ~et of' %ect ors. f WO j, ). a(04 ,......a) I,,) are t he corresponldinug steering vectors of the
I. -ra\ tiodel, let t lug
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we can reduce the signal model for multipath phenomena to the single-ray propagation model of
Section 3.1.1.

r(t) = b d(t) + Al i(t) + n(t) (26)

because we can view the vector b as a generalized steering vector for a single desired signal although
it may not be a vector in the array manifold. Therefore, following our work in Section 3.2, cumulant-
based blind estimation procedure will yield

c = 34 b (27)

where 34 = 1b, 1
2 blH 1)d,4, in which b, is the first component of b. Incorporating (27) into the

constrained power minimization procedure, we obtain the following weight vector,

wcum = ,35R-' c = 24)5 R- 1 b (28)

where : ( cH R- 1 c )-1.
Next, we find an alternate expression for w•1, . Recall that the optimization problem which

results iM w-, is: minimize wfRw subject to wc = 1. or by (27), wHb = 1/04. We can express
the output power in the following way by using (9) and (26),

w 1 Rw = a wI W'bI2 + wHR,,w (29)

but. due to the con.straint wHb = 1/,3.4 the first term in the above expression is a constant.
Therefore, the original optimization problem can be translated into : minimize wHR ,w, subject
to wtc = I or equivalently, wtb = 1/3,4. The solution to this problem is

W .. = 3(6 R-1 c (30)

whlere 36 = (cH R' c)-'. Of conurse. this solation can also be expressed in terms of b, as

= 37 R-1 b (31)

where ,17 = 3436.
Note that althougih (30) and (31) are alterniate expressions for w-,,, . they are not the way to

act ually compute w ,..... since R,, is not available in general.
Next. we determiune thle weight vector that yields the inaximuni SINR. SINR can be expressed

as a function of the weight vector of the beamformer, as

2w bb V w
SINR(w) = ad wH Ru w (32)

i)efiliuig. v = R11 w s'o that w = R7/ 2 v. we can reexpress (32). as

SINR (w) SINR ( R-'/ 2 v) = ar2 IvR 1/b 12(3vH v

\ptp)lyi g the Schwari iiie(piality [50] to (33). we find that

SINH (w) SIN I( R-, 12 v) _< (T2 1I R-1/ 2 b 112 = 1b[HR-b (34)

252



where equality holds if and only if
v = 38 RU-1/ 2 b (35)

in which ;8 is a non-zero constant. Consequently, the optimum weight vector WSINR, which yields
the maximum SINR. can be determined from w = RU-1 /2v and (35), as

WSINR = 28 R-' b (36)

Based on this derivation, some comments are in order. It is clear, by comparing (31) and (36),
that the cumulant-based beamformer does indeed yield the maximum possible SINR, since wc,,m
is just a scaled version of WSINR. This observation proves that the cumulant-based beamformer is
optimal. In addition, wc,,m can be computed from the received data, whereas WSINR, as imple-
niented in (36), requires knowledge of R,,, which can not be determined from the received data in
the presence of the desired signal. Finally, note that robust approaches presented in Section 3.3
are directly applicable in the presence of multipath.

3.5 Adaptive Processing

In real-world applications, adaptive beamforlming is an important requirement, especially when the
desired signal source is in relative inotion wit Ih respect to the arra. In this section, we address this
problem by providing an "*estiinate and plug' type of adaptive algorithm for the CUM, method.

The beaniforming procedulec (16) requires the inverse of the sample covariance matrix to com-
pute the weights. We can estimate the covariance matrix recursively, as

t (1 - 1 )RA_ 1 + air(t)rH(t) (37)

Since we need to propagate the inverse of At, we use the Sherman-Morrison formula [46], to obtain

I R -Ir(t)rH(t)I.li
[Rki 2 - • l - --t)] ] t = 1,2 .... (38)R tl -1 -•l l --al[1 -- rH(t)R -'. r(t)

wit II RJ = I where is a large positive number and aI controls the learning rate for second-order
t atiISt iC'.

To comlpute t he weight vector, wo also need the cumulant-based estimate of the source steering
vector c. We can estimate it recursively as

c1(t) 1( - o,,)V(t - I) + n12[ Irl(t)I rt,(I)rl(t) - 2p(t)q(t) - vH(t)1 (t)] (39)

wit Ih the auxilarly pl'oc(esses defined as

q(1) I (1 - (3)q(t - I) + 031rl(t)010)

I (' -- (1): (t - 1)+ 03)7- 1

.(t) = I -I (13)X(t - 1) + a 3rl(t)rl(t)

lhe auxiliary proceses are required in order to implement the cross-correlation terms in (11). The
initial valnes for the auxilary processes can be set to zero. Different learning rates are provided
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to emphasize the fact that higher-order statistics require longer periods to acquire the required

information.
We can perform adaptive beantitorning by computing the weight vector at each time as

w(t) = ft 1-(t) (40)

and obtain the array output, as
y(t) = wH(t)r(t). (41)

Adaptive versions of CUM 2 and C2 methods will appear in a later publication.

3.6 Simulations

In this section we present various experiments to illustrate the performance of cumulant-based
beam forming. In all of the experiments we employed a uniformly spaced linear array, rather than an

arbitrary geometry. This is done for two reasons: Covariance-based techniques are mainly designed
for this type of array st ructure. e.g.. the spatial smoothing algorithm [48-49,61-62,66,74,751, so that
it will be possible to coimpare both previous and future work with our current results. In addition,
allowiig a sufficient imumber of maultipath rays, it is possible to represent any arbitrary steering
vector by the linear array, since the steering vectors of the uniformly spaced isotroinic linear array
exhibit Vandermonde structure, resulting in linearly independent vectors for diffeient DOA's. In
all batch type of experimeits, the record length is 1000 snapshots and the array has 10 isotropic
elements with uniforim half-wavelength spacing.

3.6.1 Experiment 1: Desired Signal in White-Noise

lIn this experiment, we employ the linear array described above for optimum reception of a BPSK
sigial, which is expected to arrive froii broadside in the presence of temporally and spatially white,
equal power, circularly symmUetric sensor noise; however, the desired source illuminates the array
fromi 5" broadside.

Our first MVDR beamforrmer. MVDRI. looks to broadside, i.e., a mismatch condition. Our
secoild MVD)R beaniforiier, MVDR 2. uses exact knowledge of DOA of the desired signal. We also
eimploy the cutiulaimi-based beaimformner of Section 3.2. CUMI, and the improved cumulant-based
beamiifornmer (CUM2 of Section 3.3.1. We investigate the performance of these processors for the
following two elemiental SNR levels: 20 dB for a strong signal and 0 dB for a weak signal. Note
that the white-tnoise gain of amiy processor is limited to 10 dB by the number of sensors [15].

The beantpattern responses (i1). and white-noise gains of these beamformers are presented
in Fig. 9 for SNR=20 dB. All responses are normalized to have a maximum value of 0 dB. For
cotinparisomi ipurpoose,. the optimum lbeaniformner response, calculated by using true statistics in (16),
is presented as the dashed curves. Observe that due to the mismatch condition. MVDR1 nulls the
desired signal. More interestingly. the \VDR2 processor that utilizes the true DOA information
does i.ot iniprove the SN R, (lue to the itismnatch arising from the use of a sample-data covariance
niatrix. The culiulant-based processors. ('UNI and CUM 2 , yield excellent performance without
atiiv knowledge of source DOA. It i., urry iimportalit to observc that the performance of cumulant-
basd proccssor., ar( b tt( r th(I that of th( Mi 'DR with exactly knowii look-direction.

WVe performed 100 Momnte-(Carlo runs to investigate the performance in a better way. The results
are given im Table I.
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Figure 11: Power of cuniulant-based beamforming: (a) received signal at the reference ele-
ment at SNR = 0 dB, (b) output of CIUM 2 processor.

Fromn these results, it is clear that cu nulant-based processors are superior and the extra compu-
tation involved in CUM 2 reduces the variations. Note, also, that variations in the MVDR processors
are significantly larger than those of the cuniulant-based counterparts. This agrees with the previ-
ous remarks about the sensitivity of MVDR processing to experimental conditions in a high-SNR
environinent.

Table 1: Results from 100 Monte-Carlo Runs for Experiment 1

White-Noise Gain (dB)
Processor SNR=20dB SNR=0dB

Mean Std. Mean Std.
MVDR1  -38.130 1.579 0.413 0.281
MVDR 2  0.179 1.360 9.583 0.131
cUM1  9.954 0.015 9.058 0.359
CUM.2  9.990 0.003 9.959 - 0.014

k"e perlorlmted lihe ,sal e experiment for 0 d1B SNR condition. Figure 10 illustrates the beam-
pattern responses and white-noise gains of the processors. Monte-Carlo results are also given in
Ta ble I. In this low-SNRH condition, MVDR results are expected to improve since the mismatch
(ouditions for the (lesired signal will be masked by the presence of white noise of comparable power,
as explained iII Sectionl 3.3. MVDRI processor does not offer a significant gain due to the persistent
ini.,niatch condition. but \I VDR.2 yields a near-optimurn result, since presence of higher-level noise
iiasks the nisiiatcli due to the ue of a sainple-covarialce matrix. The performance of CUM1
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tFigure 12: Beamforniing in the presence of spatially colored noise: (a) Spatial Power Spectral
Density of noise, (b) Beampattern of GUM 2 processor. The optimum pattern is illustrated
in dashed lines for comparison purposes.

processor is slightly below than that of MVDR 2 and exhibits more variations. This is due to the
inefficient use of the array data, since a, high-level of noise corrupts the cumulant estimates and
with ('UM, there are no precautions to combat these errors. As expected, CUM 2 overcomes this
problem by using SVD. Results in Table 1 indicate that CUM 2 achieves the best performance with
iniiuniun variations.

Finally, to demonstrate the power of cumulant-based beamforming, we illustrate the received
signal and the output of CUM 2 processor for SNR=0 dB case in Fig. 11. It is clear that CUM 2 is
capable of sufficient noise rejection for performing correct decisions.

3.6.2 Experiment 2: Spatially Colored Noise and Multipath Propagation

hi thk, experiment, we investigate the performance of the proposed approach in the presence of
spatially colored noise. We employ the linear array of the previous experiment. We assume that the
noise field is created by a set of point sources distributed symmetrically about the broadside of the
linear array. As suggested in [67], this source structure is typical when the noise field is spherically
or cylindrically isotropic. In this case, the noise covariance matrix is symmetric-Toeplitz. In our
experinient, we use the following structure for the covariance matrix of undesired components,

R,( i,j) = 0.8 I--il (42)

I'he spatial power spectrum of undesired components is illustrated in Fig. 12a. It is clear
that most of the noise leaks into the system from broadside. The desired signal illuminates the
array from broadside, with an SNR of 10 dB. To illustrate the optimum combining property of our
approach. we implanted an exact replica of the desired signal illuminating the array from 600, where
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Table 2: Results fronl 100) Monte-Carlo Runs for Experiment 2

Processor SNRo (dB)
Mean Std

CUMM 23.641 0.017
CUM 2  23.645 0.015

noise power is relatively less when compared to that from broadside. The beampattern of CUM 2
processor is given in Fig.12b. For comparison purposes, we present the response of the optimum
beamifriner based on exact statistical information, as a dashed curve. The maximum-possible SNR
at the output is 23.689 dB for this scenario. It is clear that the response of CUM 2 is almost identical
to that of the optimum beamformer: both processors emphasize the signal illuminating the array
front (10". since the noise contribution is less in this region. We performed 100 Monte-Carlo runs
for this scenario, and tihe results are presented in Table 2. It is clear that both cumulant-based
processors perforni equally well. The reason for this phenomenon is the presence of the multipath
froii 60" through a low-noise background that virtually increases the effective SNR, which, in
turtin. alleviates the effects of estimation errors. Note that the peak of the beampattern is slightly
shifted fromn 60", in order to receive less interference. Similar behavior is observed in covariance-
based direction-of-arrival estimation in the presence of colored noise resulting in biased estimates
of parameters.

3.6.3 Experiment 3: Effects of Robustness Constraint

II this- experinient, we illustrate the effects of the robustness constraint of Section 3.3.3, on a CUM 1
prc(essor in the presence of white noise. We employ the same array as in the previous experiments.
\\: eIIplov (' U M . since this processor uses the data inefficiently, and requires a robust approach. In
oiir experiiient, we consider the situation with SNR=0 dB. Figure 13 illustrates the beampatterns
of ('1' l processor for several SNR, values. It is clear from the results that, as the perturbation
incre,ases, the patterns match better since the mismatch due to estimation errors in the steering
vector estiiatle are masked by the presence of virtual increased level of noise. This method should
be used sparingly in the presence of jaminers. because virtually increasing the noise level results in
(hivertinig the capability of the array from nulling the directional interference.

3.6.4 Experiment 4: Multiple Interferers

lit tiis Oxperiluienlt. we consider the problem of beainforming in a mnultipath environment in the
p ,s(elice of iiiihtliple jaiiiiiers. We eiiplov the same array as in the previous experiments. The
ig iiof initerest originiat es from a lPS K colnmunication source. and it is expected from broadside;

howeýver, due to inultipal i effects, miultiple delayed and shifted replicas are received. There are two
janin•nrs. and( one is suibject to niuiltipath as well. Table 3. summarizes the signal structure.

Note tha thlere are 10 wavefronts illuminating the array and it is not possible to estimate their
l)OA 's withi any existing high-resolution niethod: hence, signal-COPY algorithms [58] can not be
sd even withi perfect knowledge of tihe array manifold.

258



- 100 -80 -650 -40 -20 0 20 40 650 s0 t00

-C0

-100 -80 60 -0 -20 0 20 .40 650 so 100

400 r 8 9 - .0 ý0 s 0

100. 80 C0I 40 -2 0 -20 40C 650 80 100

(c) -80 60, 40) -20 0B 20e optmu pat0r 80 100taedi ahd ieocmaio

Duie to presence of coherent wavefronts. second-order statistics are not spatially -tationary along
the array: hence, it is not mneaningfuli to define SINR. at an array element. Instead, we compute the
SINR. at the ouitput of the optimal processor by employing true statistics. The maximum possible
S1NR,, is found from (34) to be 12.677 dB. Fromn Table 4, we observe that CUM 2 performs very
well iidci- these severe conditions. Performance of CUM, is effected by strong interferers since this
processor does miot uitilize all of the available information. Finally, we observe that MVDR with
correct look-direction cancels the desired signal due to coherence. Note that GUM 2 exhibits less
variations, thani other processors.

T'o gaini more insight into0 the operation of the processors, we illustrate *he beampatterns for
MVI)R and CUM,2 ini Fig. 14. W~e focus on the region where the wavefronts are received by the array.
ItI-, ob served that thme MVRprocessor does not niull the jammer from -I', since it maintains the
look-directiomi constralint for 0' and trie., to minimize the output power by destructively combining

lhe coherent wavefrouuts. On the other hand. (ill M.2 is blind to Gaussian interferers, and, as in
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TFable 3: Signal structure for Experiment 4

Source JPowver (dB) Multipath Coeff. DOA
I(0.0,-0.5) -101,

(0.9895,-0.0311) -25-
(1.0,0.0) 00-

BPSI( t0 (-0.6472,-0.4702) 63___
(-0.8,0.0) 8z

(0.1414,0.1414) 110t

_________ _________ (0.462,0.0191) 180

JAMMER, 10 T (1.0,0.0) 260
_________ _________ (0.5657,0.5657) 320

.JANIMER2  10 { (1.0,0.0)
NOISE 0 _________

0 -10 --

E -20 -

30 -I

40

SINRcý -29-573 dB
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Angle Df Arrival
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to
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lFiguire 141: Beainpatterns and array. gains of processors: (a) MIVDR with correct look direc-
tMilj. (1)) "',\12. Ilie o)t I m"11i pattern is illustrated in clashed lines for comparison purposes.
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Table 4: Results from 100 Monte-Carlo Runs for Experiment 4

Processor SINRo (dB)

Mean Std
MVDR -28.424 4.405
CUM 1  4.110 2.118
CUM 2  10.290 0.746

C 11.879 0.627

Experiment 2, it estimates the generali:zd steering vector of the desired signal and combines the
wavefroits to enhance SINR at the output. CUM 2 puts a null on the jammer from - 1V, destructively
comibines the wavefronts from the first jammer by weight-phasing rather than null-steering, and
reinforces the wavefronts from the desired source.

Finally, we implement the C 2 beamformer suggested in Section 3.3.2: we first estimate the
steering vector as done for CUM2, but then further project it into the subspace spanned by the
principal eigenvectors of the sample covariance matrix. We use the resultant vector as the estimate
of the desired signal steering vector, and construct an MVDR beamformer based on it. The
performance of the resultant processor is demonstrated in Table 4.

We observe that hY conibining cuniulants with covariance information, we obtain the best
results.

3.6.5 Experiment 5: Adaptive Processing

In this section. we demonstrate the results from the adaptive version of CUM1 approach as described
in Section 3.5. We employ the 10 element uniform linear array of previous experiments. The initial
patterni of the beamformer is designed to be isotropic, by letting c(0) = [1, 0 ]T. Desired signal
illuiniliates the array from broadside with SNR=10 dB. A jammer with power equal to that of the
desired source is present at 30". Note that there is no nonstationarity involved in this experiment;
our aim is to d(emonstrate the evolution of the beamforming process and indicate the data lengths
required for cunulault aitid covariance estimation. Tracking properties will be included in our future
work. including comparisons with adaptive versions of CUM 2 and C. processors.

Figuure 15 illustrates the beanipattern of the adaptive CUM, processor as time evolves. After
100 snapshot., the )eanipattern is still close to isotropic. At 300 snapshots, covariance matrix
estiniate is illproved. indicating the presence of desired signal from broadside. At this time point,
the c(itiulant-based steering vector estimate has not matured, so it can not prevent the desired
iglial from being cancelled. After 500 snapshots, cumulant estimates get better, and there is a

tedi(lency to cancel the interference rather than the desired signal. Finally, after 700 snapshots the
pirocessor iemvloves the ioterferenmce b minill steering.

3.6.6 Experiment 6: Effects of Data Length

In t hii section. w(, emiiploy the linear array of Experiment 1, with the same noise conditions, and
vm-ry the dtaa lengthi to ol)serve hlie b)ehavior of the beamforimers CUM,, CUM 2 , MVDRI and
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NI)lR2. Figure 16 demionistrates the variation of white-itoise gain of the processors with data
length. for 0dB and 20dB SNR levels. Each point onl the plots is obtained by averaging the results
from 50 Monte-Carlo simulations.

From Fig. 16a it is clear that CUM 2 outperforms all the processors, including MVDR 2 which
utilizes the correct look direction for all data lengths. Furthermore, small sample properties of
(T'.M 2 are quite impressive, motivating further research for developing its adaptive version. Low
SN R niasks the misniatch in MVDR 2 due to the use of sample covariance matrix; hence, as can be
seen froni Fig. 16a, (TkMl is inferior to MVDR 2.

Figures 16b and 16c, indicate the effect of higher SNR on performance. CUM, and CUM 2
perform almost identical for all data lengths. Their gain is larger than 9 dB even for less than 50
snapshots. MVDR 2 can not recover in this experiment since the mismatch results in severe signal
cancellation. We do not include the response of MVDRI, because its performance drifts around
-3. (1B.

Phu( r(,stults indicatc that oar approach has very promising small sample behavior that deserves
,mor ri .•arc/h. This will be a topic of another paper.

3.7 Conclusions

We liave presented opti iiiium lbeamforiiiing algorithms for non-Gaussian signals, which are based
on fourth-order ciminlants of the data received by the array. Our proposed methods do not make
any a.Illpt lion about the sensor locations and characteristics, i.e., they are blind beamforming
iiethodls. (iiiinlant-based estination is eliployed to identify the steering vector of the signal
of itnterest and NVI) beaniforuiiing using this estimate is used to remove Gaussian interference
colipoilents. Wve have suggested several approaches to combat effects of estimation errors. We have
also iI inpleineted a recursive version o0( tlw method to enable real-time beamforming. Simulation
experiimeiit s demiolist rale the performance of our approaches in a wide variety of situations. It is
iniport'lan to emphasize that the proposed methods outperform an MVDR beamformer with an
exactlv knowti look- (1 irection.

In our fuituin work, we shall address the problem of optimum beamforming in the presence
of niultiple non-G;aussian interferers and design of adaptive algorithms with better convergence
propeirties.

4 Final Comments

Ill this papelr. we Ium ma rized on r recent research results on the applications of cumulants in speech
a ( array pirocessimig. The results are very promising, and encourage further study in these areas.

\W, acknowledge that especially in speech processing, cumulant applications are still in a very
)inaiit olec state,.A rav processing, however, captured more attention, particularly after the excel-
cvit work in [91. 1n t lie other hand. array processing has many practical problems, such as unknown

10ilso," gain/phase [ictor•. array shoape calibration, and DOA estimation for coherent sources in col-
MrCd noise. It is our ainm to develop ciiiinnlant-based solutions to those practical problems that still
lack r•ca,,,o ab ic sol itions when oily second-order statistics are eml)loyed.
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Moments and Wavelets in
Signal Estimation

Abstract: The problem of generalized nonparametric function estimation has
received considerable attention over the last two decades. Most of the approaches have
assumed smoothness of the function to be estimated generally in the form of continuity
of higher order derivatives and/or bounded variation and have used convolution kernels
or splines as the estimation devices. Generally focus has been on density estimation or
nonparametric regression. The spline and kernel-based methods may be inappropriate if
either smoothness assumptions are violated or if additional side conditions are present.
Wegman (1984) introduced a general framework for optimal nonparametric function
estimation which applies to a much wider class of problems than simply density
estimation or nonparametric regression. In this framework, a class of admissible
estimators is regarded as a compact, convex subset of a Banach function space and a
convex objective functional is to be optimized over this set. Recent work on wavelets
suggests a powerful method for constructing orthonormal bases to span the set of
admissible estimators. Moreover, older work on frames has re-emerged to some level of
prominence because of the work on wavelets. The optimal estimates can be computed
as weighted linear combinations of the orthonormal bases. The weight coefficients are
computed as moments of the basis functions. We illustrate these methods with some
numerical examples.
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Moments and Wavelets in
Signal Estimation

1. Introduction.

The method of moments is a time-honored traditional technique in statistical

inference while wavelet analysis has recently burst upon the mathematical scene to

capture the enthusiasm and imagination of many applied mathematicians and engineers

both because of their important applications in signal and image processing and other

engineering applications and also because of the inherent elegance of the techniques. In

this paper we bring these tools together to illustrate their application to transient signal

processing. Wavelets are described in detail in a number of locations. Much of the

fundamental work was done by Daubechies and is reported in Daubechies, Grossmann

and Meyer (1986) and Daubechies (1988). Heil and Walnut (1989) provide a survey

from a mathematical perspective while Rioul and Vetterli (1991) provide a survey from

a more engineering perspective. The new book by Chui (1992) is an excellent integrated

treatment which I believe is more mathematically sophisticated than the author

supposes. In spite of its title as an introduction, it requires somewhat more

mathematical depth and maturity and is best regarded as more of a monograph.

This present paper describes the basic wavelet theory in the context of the

general statistical problem of nonparametric function estimation. It will be show that

traditional moment based techniques have an interesting and useful connection to

modern nonparametric functional inference for signal processing via wavelets. Wegman

(1984) describes a basic framework for optimal nonparametric function estimation. This

framework captures the optimal estimation of a wide variety of practical function

estimation problems in a common theoretical construct. Wegman (1984), however, only

discusses the existence of such optimal estimators. In the present paper, we are

interested in combining this optimality framework with more general wavelet

algorithms as computational devices for general optimal nonparametric function

estimation. A new application of optimal nonparametric function estimation is found in

Le and Wegman (1991). A second application will be discussed in this paper.

In section 2, we discuss the optimal nonparametric function estimation

framework. In section 3, we turn to a discussion of the general function analytic

framework which leads to bases and frames. Section 4 introduces the notion of a

wavelet basis and demonstrates the connection with Fourier series and Parseval's
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Theorem. In section 5 we turn to transient signal estimation, develop an optimization
criterion and illustrate the computation of a transient signal estimator.

2. Optimal Nonparametric Function Estimation.

Consider a general function, f(x), to be estimated based on some sampled data,
say x1, x2,...,xa. This is, in fact, the most elementary estimation problem in statistical

inference. Often the function, f, in question is the probability distribution function or

the probability density function and most frequently the approach taken is to place the

function within a parametric family indexed by some parameter, say 0. Rather than

estimate f directly, the parameter 0 is estimated with f0 then being estimated by f = f

Under a variety of circumstances, it is much more desirable to take a nonparametric
approach so as to avoid problems associated with misspecification of parametric family.
This is particularly the case when data is relatively plentiful and the information

captured by the parametric model is not needed for statistical efficiency.

Probability density estimation and nonparametric, nonlinear regression are

probably the two most widely studied nonparametric function estimation problems.
However, other problems of interest which immediately come to mind are spectral

density estimation, transfer function estimation, impulse response function estimation,

all in the time series setting, and failure rate function estimation and survival function

estimation in the reliability/biometry setting. While it may be the case that we simply

may want an unconstrained estimate of the function, it is more often the case that we
wish to impose one or more constraints, for example, positivity, smoothness, isotonicity,

convexity, transince and fixed discontinuities to name a few appropriate constraints.

By far, the most common assumption is smoothness and frequently the estimation is via

a kernel or convolution smoother. We would like to formulate an optimal

nonparametric framework.

We formulate the optimization problem as follows. Let X be a Hilbert space of

functions over R, the real numbers (or C, the complex numbers). For purposes of the

present paper, we assume R rather than C unless otherwise specified. The techniques we

outline here are not limited to a discussion of L2 (R) although quite often we do take %

to be L2. In this case, we take

< f, g > = ff(x) g(x) dp (x),

where p is Lebesgue measure. We emphasize that this is not absolutely required. As
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usual 11 f r= /<J ,f 7. A functional L:,%-R is linear if

Z(af +,3g) = al(f) +,31(g), for every f, g E X and a, # E R.

L is convex on S C % if

.L(tf+ (1 - t)g) < ty(f) + (1 - t)L(g), for every f, g E S with 0 < t < 1.

L is concave if the inequality is reversed. L. is strictly convex (concave) on S if the

inequality is strict. Z- is uniformly convex on S if

tL(f) + (1 - t).(g) - L(tf + (1 - t)g) > ct(1 - t) I1 f- g 112

for every f, g E S and 0 <t < 1.

We wish to use L as the general objective functional in our optimization

framework. For example, if we are concerned with likelihood, we may consider the log

likelihood,
n

1L(f) = • log f(xi), xi are a random sample from f.
i--1

If we have censored samples we may wish to consider

n n
1(g) = Si log g(xi) + Z (1-6i) log G (xi),

i=1 i=1

xi again a random sample, 6i a censoring random variable, 1 =1-G, and

G(x) = f g(u) du. This is the censored log likelihood. Another example is the
-00

penalized least squares. In this case

nb

1L(g) = ( (yi-g(xi))2+,X (Lg(u))2 du.
i=I a

Here L is a differential operator and the solution of this optimization problem over

appropriate spaces is called a penalized smoothing L-spline. If L = D2 then the solution

is the familiar cubic spline.

The basic idea is to construct S C X where S is the collection of functions, g,
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which satisfy our desired constraints such as smoothness or isotonicity. We wish t4.

optimize 1(g) over S. The optimized estimator will be an element of S and hence will

inherit whatever properties we choose for S. The estimator will optimize 1(g) and

hence will be chosen according to whatever optimization criterion appeals to the

investigator. In this sense we can construct designer estimators, i.e. estimators that are

designed by the investigator to suit the specifics of the problem at hand.

Of course, in a wide variety of rather disparate contexts, many of these

estimators are already known. However, they may be proven to exist in a general

framework according to the following theorem.

Theorem 2.1:

Consider the following optimization problem:

Minimize (maximize) 1(f) subject to f E S C_ %.

Then

a. If X is finite dimensional, L is continuous and convex (concave) and S is closed

and bounded, then there exists at least one solution.

b. If % is infinite dimensional, L is continuous and convex (concave) and S is

closed, bounded and convex, then there exists at least one solution.

c. If I in a. or b. is strictly convex (concave), the solution is unique.

d. If X is infinite dimensional, I is continuous and uniformly convex (concave)

and S is closed and convex, then there exists a unique solution.

Proof: A full proof is given in Wegman (1984). For completeness, we outline the basic

elements here. a. For the finite dimensional case, S closed and bounded implies that S

is compact. Choose fn E S such that L(fn) converges to inf{1(f): f E S}. Because of

compactness, there is a convergent subsequence fnk having a limit, say f.. By

continuity of I

L(f,) = lim .(fnk =inf{l(f): f E S}.
k-+.0

f. is the required optimizer. For part b., we have the same basic idea except that S

closed, bounded and conv,,x implies that S is weakly compact. We use the weak

continuity of L. Uniqueness follows by supposing both f. and f.. are both minimizers.

Then

+(tf +(1-t)f**) < tL(f,) + (1- t)Z(f**) = inf{L(f): f E S).
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This implies that neither f. nor f.. is a minimizer which is a contradiction. 0

This theorem gives us unified fra at work for the construction of optimal

nonparametric function estimators. It does not, however, give us a definitive method
for construction of nonparametric function estimators. We give a constructive

framework in the next several sections. In closing this section we refer the reader to

Wegman (1984) for the complete proof of Theorem 2.1 and many more examples of the

use of this result.

3. Bases and Subspaces.

In this section, we discuss the basic theory of spanning bases and their

application to function estimation. Consider f, g E N. f is said to be orthogonal to g

written f i g if < f, g > = 0. An element f is normal if JI f 11 = 1. A family of elements,

say {eA: A E A} is orthonormal if each element is normal and if for any pair el, e2 in the
family, el ± e2. A family {eA: A E A} is complete in S c % if the only element in S which
is orthogonal to every eA, A E A is 0. A basis or base of S is a complete orthonormal

family in S. A Hilbert space has a countable basis if and only if it is sepaable, i.e. if
and only if it has a countable dense subset. Ordinary LP spaces are separable. We are

now in a position to state the basic result characterizing bases of Hilbert spaces or

subspaces. We write span({eA)) to be the minimal subspace containing {eA}. This is

the space generated by the elements {eA}.

Theorem 3.1:

Let % be a separable Hilbert space. If {ek}j= 1 is an orthonormal family in X,

then the following are equivalent.

a. {ek}= L is a bai, for %.

b. If f E X and f -L ek for every k, then f = 0.

c. Iff •E X, then f = k < f, ek > ek. (orthogonal series expansion)
k=i o

d. Iff,gE%,then <f g> = 1 <f,ek> <g,ek>.

. if fE %, If 112= ' j K f, e=> 12. (Parseval's Theorem)
k=IProof:

a => b: Trivial by definition.

b => c: We claim %=span({ek}). If not there is f#0, fEX such that

f ý span({ek}). This implies that f L ek for every k. But f L ek for every k and f # 0 is a

contradiction to the {ek } being a basis. Let N/ = span(ek). Then X( = span( ,2 Xk)=
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Sk/. This implies that for f E N,

(3.1) f=t ckek.
k=i

Substituting (3.1) in the expression for the inner product yields

< f, ej > = < k ck ek, ej > = ck < ek, ej >.
k=i

By the orthonormal property, <ek, ej > = 1, if k =j and = 0, otherwise. It follows that
< f, ej > = ci. Thus

(3.2) f= < f, ek > ek.
k=1

c=>d: < <fg>=<f, <g, ek>ek> < 9, ek> <f, ek>
k=i k=l

d=>e: Letf=ginpartd.

e => a: If fE% and f.Lek for every k implies <f, ek> =0 for every k. This in

turn implies that f = 0. Thus f = 0. This finally implies {ek})k is a basis. 1

Thus given any basis {ek}k, we can exactly write f = f ck ek and we can
by k=1

estimate f y 'Fk ek. Thus a computational algorithm for the optimal nonparametrick~l

function estimator can be based on this result from Theorem 3.1.c. However, this does

not yet take into account the "design" set, S. In order to more carefully study the
structure of S we consider the following result. In the following discussion let S . X.

Then define S I{f E : f I S}.

Theorem 3.2:

If S C X is a subset of X6, then
a. S i is a subspace of X and SnS - c {0}
b. ScS" span(S)

c. S is a subspace if and only if S = S .

Proof: S - is a linear manifold. To see this if f1, f2 ES, then for every geS,

<alfl+a 2f2 , g> =a,<f1 , g> +a 2 <f 2, g> =a 1 .0+a 2 .0-=0. Thus a&fl+& 2f2 eS -L.

This implies S - is a linear manifold which is sufficient to show that S -L is a subspace
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provided we can show S ± is closed. To see this if f E closure (S - ), then there exists

{fn}gS ± such that f=lim fn and for every gES, <fn, g> =0. But <f, g> =

lim <fn, g> =lim0=O. This implies f±S which in turn implies fES 1 . Part b

follows from part a by replacing S by S -. Part c is straightforward application of the

two previous parts. 0

Suppose now that we have a basis for %, call it {ek}l'= 1. This basis obviously

also spans subset S of X6 and hence any of our "designer" functions in S can be written

in terms of the basis, {ekl=,. The unnecessary basis elements will simply have

coefficients of 0. In a sense, however, this basis is too rich and in a noisy estimation

setting superfluous basis elements will only contribute to estimating noise. As part of

our "designer" set, S, philosophy, we would like to have a minimal basis set for S.

Theorem 3.2 gives us a test for this condition. Consider a basis {ek}lc= 1 for X. Form

Bs which is to be a basis for S. We define Bs by the following routine. If there is a

g E S such that <g, ek> : 0, then let ek E Bs. If on the other hand there is a

g •E S L such that <g, ek> $ 0, then let ek E B5 L. Unfortunately, it may not be that

Bsn S B = 0. But this algorithm yields {ek} = Bs u Bs ._. Moreover S C span(Bs).

Thus we may be able to eliminate unnecessary basis elements. We may also be able to

re-normalize the basis elements using a Gram-Schmidt orthogonalization procedure to

make BS _ BS . Usually if we know the properties of the set, S, we desire and the

nature of the basis set {ek}, it will be straightforward to construct a test function, g,

with which to construct the basis set, Bs. If S is a subspace, then S = span(Bs). In any

case we can carry out our estimation by

(3.3) = E kek.
ek E B&

In a completely noiseless setting (3.1) is really an equality in norm, i.e.

If- E kckektl =0. If X is L9 (pt), with p Lebesgue measure, then (3.1) is really

(3.4) f= Zkcke., almost everywhere •u with ck = < f, ek >.

This choice of ck is a minimum norm choice. However, in a noisy setting, i.e. where we

do not know f exactly, we cannot compute ck directly. However, we may be able to

estimate ck by standard inference techniques.
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Example 3.1. Norm Estimate. The minimum norm estimate of ck is the choice which

minimizes 11 f - , kckek, i.e. ck = < f, ek >. In the L2 context,

<f, ek > = Jf(x) e,(x) dl(x).

R

If f is a probability density function, then < f, ek > = E[ek] which can simply be

estimated by n - 1 lek(xj), where xj, j = 1,...,n is the sample of observations. We

note that the major approach to estimating the weighting coefficients is via a traditional

method of moments.

Example 3.2. General Form of Estimate. In the general context with optimization

functional I we have

(3.5) Z(f)= ckek B )-(ck}).
4ek E B,,

Since (3.5) is a function of a countable number of variables, {ck}, we can find the

normal equations and with the appropriate choice of basis, find a solution. For this we
will typically assume I is twice differentiable with respect to all ck. A wide variety of

bases have been studied. These include Laguerre polynomials, Hermite polynomials and

other orthonormal systems. Perhaps the most well-known orthonormal system is the

system of fundamental sinusoids which span L2(0, 2r'). One might reasonable guess

that wavelets form another orthogonal system. We discuss the connection in the next

section.

4. Fourier Analysis and Wavelets.

4.1 Bases for L2(0, 2r).

Let us consider the set of square-integrable functions on (0, 27r) which we denote

by L2 (0, 2r). L2 (0, 2r) is a Hilbert space and a traditional choice of an orthonormal

basis for this space has been ek(x) = eikt, the complex sinusoids. Thus any f in L2(0,27")

has the Fourier representation by Theorem 3.1.c

f(x) = ck eikz
k= -co

where the constants ck are the Fourier coefficients defined by
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ck = �f f(x)e - ikzdx.

0
This pair of equations represent the discrete Fourier transform and the inverse Fourier

transform and is the foundation of harmonic analysis. An interesting feature of this
complex sinusoids as a base for L2 (0, 27r) is that ek(x) = eikx can be generated from the

superpositions of dilations of a single function, e(x) = e". By this we mean that

ek(x) = e(kc), k=..., -1, 0, 1,...

These are integral dilations in the sense that k E J, the integers. The concept of

dilations of a fixed generating function is central to the formation of wavelet bases as we

shall see shortly.

A well known consequence of Theorem 3.1.e for the complex sinusoid basis is the

Parseval Theorem. For this base, we have

Theorem 4.1: (Parseval's Theorem):

27r1) flfl 12 2x 00 12
(4.1) 11f = If(x) 2dx I ck

0 k= -00

Equation (4.1) is known as Parseval's Theorem in harmonic analysis and states that the

square norm in the frequency domain is equal to the square norm in the time domain.

While the space L2 (0, 2r) is an extremely useful one, for general problems in

nonparametric function estimation we are much more interested in L2(R). We can
think of L2 (0, 2r) as with functions on the finite support (0, 27r) or as periodic functions

on R. In the latter case it is clear that the infinitely periodic functions of L2 (0, 2ir) and

the square integrable functions of L2(R) are very different. In the latter case the

function, f(x) E L2(R), must converge to 0 as x-- + oo. The generating function e(x) = eiz

clearly does not have that behavior and is inappropriate as a basis generating function
for L2 (R). What is needed is a generating function, e(x), which also has the property

that e(x)--,0 as x-,+±o. Thlus we want to generate a basis from a function which will

decay to 0 relatively rapidly. i.e. we want little waves or wavelets.
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4.2 Wavelet Bases.

Let us begin by considering a generating function 4 which we will think of as our

mother wauelet or basic wavelet. The idea is that, just as with the sinusoids, we wish to

consider a superposition of dilations of the basic waveform 4. For technical convergence

reasons which we shall explain later we wish to consider dyadic dilations rather than

simply integral translations. Thus for the first pass, we are inclined to consider

Vij(x) = 2j/2 4 '(2J/2x). Unfortunately, because of the decay of 4 to 0 as x-4+oo, the

elements {4'j} are not sufficient to be a basis for L2(R). We accommodate this by

adding translates to get the doubly indexed functions Oj, k(x) = 2j/2t(2jx - k). We

choose V, such that

w) dw exists.

Here ý is the Fourier transform of 4. Under certain choices of 4, O j, k forms a doubly

indexed orthonormal basis for L2 (actually also for Sobolev spaces of higher order as

well). As we shall see in the next section, a wavelet basis due to the dilation-translation

nature of its basis elements admits an interpretation of a simultaneous time-frequency

decomposition of f. Moreover using wavelets, fewer basis elements are required for

fitting sharp changes or discontinuities. This implies faster convergence in "non-

smooth" situations by the introduction of "localized" basis elements.

Example 3.1 Continued: Notice that

c~00 2~ 4'~>= j /2 '2ix -k) f(x) dx.
cj f, _j k > -x0

In the density estimation case

cj,k = E ( 2 j/2 4'(2Jx-k))

Thus a natural estimator is

iF 2j/2 n ¢(2ix/-k),

where xi, i = 1,...,n is the set of observations. Again we are simply using a method of

moments estimator.

Notice that we can construct a Parseval's Theorem for Wavelets.
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Theorem 4.2: (Parseval's Theorem for Wavelets)

(4.2) I1fI12= If(x)12dx =y 0 Icjk 2 = 2•2
E E_1 I cj,kI-00 j=-oo k=-oo k=-oo j=-oo

At this stage we are left with the problem of constructing an appropriate mother

wavelet, 4, suitable for constructing the basis. To do this we turn to the device of

multiresolution analysis.

4.3 Multiresolution Analysis.

To understand multiresolution analysis let us first consider the construction of
space Wj = span{1kj, k: kE J}. That is we fix the dilation and consider the space

generated by all possible translates. We may write L2 (R) as a direct sum of the WP

L2(R) = W. so that any function f E L2 (R) may be written as
E J f(x) =...+dJ(X)+d0(x)+dl(x)+...

where dcJ E J. If V) is an orthogonal wavelet, then W± .l. Wk, kA j. We shall assume

the unknown 0' to be an orthogonal wavelet in what follows. Notice that as j increases,

the basic wavelet form ik(2Jx - k) contracts representing higher "frequencies." For each

j we may consider the direct sum Vj given by:

j-I
Vj .- + Wj -2 +w Wj- I E Win"

M=-- -- 00

The Vj are closed subspaces and represent spaces of functions with all "frequencies" at

or below a given level of resolution. The set of spaces (Vj} has the following properties:

1) They are nested in the sense that Vj g Vj+ 1, jE J.

2) Closure (u , E JVj) = L2(R).

3) n EJVj={O}.

4) Vj+I=Vj+Wj.

5) f(x) E Vj if and only if f(2x) E Vj + 1, jE J.

1), 4) and 5) follow directly from the definition of Vj. 2) is a straightforward conse-

quence of the fact that u i E J W3 = L2 (R). 3) follows because of the orthogonality

property.

Any f E L2(R) can be projected into V . As we have seen with j increasing the
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the "frequency" of the wavelet increases which can be interpreL, as higher resolution.

Thus the projection, P f, of f into Vi is an increasingly higher resolution approximation

to f as j-.oo. Conversely, as J-oo, Pif is an increasingly blurred (smoothed) approxi-

mation to f. We shall take V0 as the reference subsFace. Suppose now that we can find
a function 0 and that we can define (kj, k(x) = 2J/2o(2Jx - k) such that

VO = span{00, k: k E J}.

Then by property 5), Vj = span{OPj, k: k E J}. While we began our discussion with the

notion of wavelets and have seen some uf the consequences, we could have actually

begun a discussion with the function 0'.

Definition. A function , generates a multiresolution analysis if it generates a nested

sequence of spaces having properties 1), 2), 3) and 5) such that {b0,k, kEJ} forms a
basis for V0 . If so, then , is called the scaling f'unction.

For the final discussion of this section, let us consider a multiresolution analysis

in which {Vj} are generated by a scaling function qý E L2(R) and {Wj} are generated by
a mother wavelet function V, E L2(R). Any function fE L2(R) can be approximated as

closely as desired by fm for some sufficiently large m• J. Not'ze fm fm-I+dm-I
where fm- I E Vm - 1 and dm - I E Wm - 1. This process can be recursively applied say I
times until we have f u fm = ddm -I•+ dm -'* + fm-1. Notice that fem- is a

highly smoothed version of the function. Indeed, this suggests that a statistical

procedure might be to form a highly smoothed (even overly smoothed) approximation

to a function to be estimated. The sequence dm -I through d, : ,.-m_ the higher

resolution wavelet approximations. Many of the wavelet coefficients cm_.i,k used for

constructing drni, i- I..., 1 are likely to be 0 and hence can contribut• to a very

parsimonious representation of the function f. Indeed, a wavelet decomposition is a

natural suggestion for a technology for high definition television (HDTV). If fm -

represents the lower resolution conventional NTSC TV signal, then to reconstruct a

high resolution image all that is needed is the difference signal which could be

parsimoniously represented by the wavelet coefficients cm_- i, = 1 I and k E J, most

of which would be 0.

Most importantly, however, is the observation that the scaling function E E V0
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and the mother wavelet , E W0 implies that both are in V 1. Since V1 is generated by

ý1,k(x) = 2 1/ 20(2x - k), there are sequences {g(k)} and {h(k)} such that

(4.3) O(x)- : g(k)0(2x- k) and O,(x) = E h(k)0(2x- k).
kEJ kEJ

This remarkable result gives us a construction for the mother wavelet in terms of the

scaling function. These equations are called the two-scale difference equations. We can

give a time series interpretation to these equations. Lets consider an original discrete

time function, f(n), to which we apply the filter

y(n) = E g(k)f(2n-k).
kEJ

First of all we note that there is a scale change due to subsampling by two, i.e. a shift

by two in f(n) results in a shift of one in y(n). The scale of y is only half that of f.

Otherwise this is a low pass filter with impulse response function g. Let us consider

iterating this equation so that

(4.4) y(J)(n) = • g(k)y(i- ')(2n- k).
kEJ

Notice that if this procedure converges, it converges to a fixed point which will be •.

This iterative procedure with repeated down sampling by two is suggestive of a method

for constructing wavelets. If g is a finite impulse response (FIR) filter of length I, the

construction of a complementary high-pass filter is accomplished with a FIR filter, h,

whose impulse response is given by h(l- 1 - n) = (- 1)n g(n). This scheme is called awsb-

band coding in the electrical engineering literature. The low-pass band is given by

(4.5) y0 (n) = E g(k)f(2n- k)
k EJ

while the high-pass band is given by

(4.6) yI(n) = E h(k)f(2n-kk).

The filter impulses as defined form an orthonormal set so that the f may be

reconstructed by
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(4.7) f(n) = E [y0(k)g(2k- n) + y1 (k)h(2k- n)].
kEJ

The sub-band coding scheme may be repeatedly applied to form the nested sequence pf

Vj. The nested sequence of {Vj} is then essentially obtained by recursively

downsampling and filtering a function with a low-pass filter whose impulse response

function is g(.).

4.4 Construction of Scaling Functions and Mother Wavelets.

We have already hinted that the scaling function may be constructed as the

fixed point of the down-sampled, low-passed filter equation (4.4). This can be

formalized by considering what statisticians would call the generating function of g(n)

and what electrical engineers call the z-transform of g(.).

(4.8) G(z) = ½ gF ) i
. E J

Notice if z = e /2, then (4.8) is essentially the Fourier transform of the impulse

response function g(.). In this case, the first equation in (4.3) may be written as

(4.9) •(w) = G(z),(ý), with z = e - iw/2

This, of course, follows because the Fourier transform of a convolution is the

corresponding product of the Fourier transforms. This recursive equation may be

iterated to obtain

(4.10) ý(W) = 101 G(e - iwI2k) 0(0).k=1

We may take ý to be continuous and 0(0) = 1. Based on (4.10) we may recover

and based on this result, the equation h(l- 1 - n) = ( - 1)n g(n) and the second equation

of (4.3) we may recover the mother wavelet, 0k(.). Thus Daubechies' original

construction shows that wavelets with compact support can be based on finite impulse

response filters which was ,,riginally motivated by multiresolution analysis. Theorem

4.3 below summarizes the general form of Daubechies' result.
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Theorem 4.3: (Daubechies' Wavelet Construction):

Let g(n) be a sequence such that

a. E tg(n)I InI'<ooforsomee>O,
nEJ

b. E g(n- 2j) g(n- 2k) =jk,
nEJ

c. E g(n)=1.
nEJ

Suppose that j(w) = G(e - iw/2) =-2 -1/2 g(n) e -inw/2 can be written as
nEJ

g(,) = [12 (1+ -iW2 )N][ E f(n) e-inw2]

where n E J

d. E If(n)l InlE<ooforsomee>O
nEJ

e. supw•E R I E nf(n) ein/2 1 < 2 N-l

Define

h(n) = (-1)n g(n-+ 1),

ý(W) = 0J G(e wli.J2k)
k=!O(x) = 1: h(k)0(2x - k).
keJ

Then the orthonormal wavelet basis is tkjk determined by the mother wavelet ¢.

Moreover, if g(n)= 0 for InI > no, then the wavelets so determined have compact

support. 0

We state this result without proof which may be found n Daubechies (1988). We

note that Daubechies also shows that the mother wavelet, 0, cannot be an even function

and also have a compact support. The exception to this is the trivial constant function

which gives rise to the so-called Haar basis. Daubechies illustrates this computation

with the example of g given by g(O)= (1+v )/8, g(1)=(3+V3)/8, g(2) =(3-V3)/8

and, finally, g(3) = (1 - vl/)/8. This wavelet is illustrated in Figure 4.1.
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5. Transient Signal Function Estimation.

Now with the basic construction of wavelets in hand, we can turn to the

transient signal processing application. Wavelets have as one of their prime

applications transient signal processing. In particular, since the most effective wavelets

are those with compact support, they are a natural basis for transient signal estimation.

However, if we are to exploit 4hem in the context of optimal nonparametric function

estimation, we must construct an optimality criterion for transient signals. The

discussion below outlines an approach to transient signal estimation set in the context of

optimal nonparametric function estimation. A fuller treatment can be found in Le and

Wegman (1992). We first consider signals. It is well-known that there is no non-zero

function in L2(R) which is both band-limited and time-limited. This being the case, we

will assume the signal to be hard band-limited, i.e. with no energy outside a fixed

interval, say I-', v?, but soft time-limited, i.e. with minimal energy in the tails. This

particular example demonstrates an elegant application of moments to signal processing.

5.1 Measuring of Out-of-Band Energy

Let L2(R) be the set of square-integrable, real-valued functions and let

h(t) E L2 (R). Denote by f (w) the Fourier transform of f(t) such that f E L2(R). We

assume f is frequency band-limited so that f(w) =0, for I w > v. We propose

approximating the class of band-limited time-transient functions by considering

functions whose energy time spread is confined to some small level s0 . As a measure of

the energy time-spread, we will use analogies to concepts from probability theory to

define various moments of I f(t) 12, which plays the role of the energy distribution

function. Assuming that

J ItIjIf(t)12dt < oo, j=1, 2,...,k,
-00O

the k"' moment of the energy distribution will now be defined as follows
00

Mk = f tk If(t)12dt.
-- OO

For k = 2, we have the 2nd moment of the energy distribution function as a measure of

the energy time spread, given as
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00M2=f t2 I[f(t)12 dt.

Remark: The factor tk serves as a weight on the energy function which is used to

control the degree of spreading in If(t) I. A larger k value implies that more weight is

applied at the tail-end of the energy distribution function and, therefore, the process of

minimizing Mk requires that more energy be centrally concentrated.

5.2 Optimal Estimation of Band-Limited Processes

For - v and v real numbers, and m and p integers, where -oo < -v < v _< oo, and

m > 0 and p >_ 1, the Sobolev space "P[ - , Iv] of complex-valued functions f on

[- v, v] is given by:

"#'reI - v, vI = {f'(Lo): f(k)(w), k =0, 1, ... m, i-, are absolutely continuous

and, J I f(')(w)IP dw < oo}.
-Li

We consider observing an actual process, r(t), and we let F(w) be the Fourier transform

of the observed process, r(t). The Fourier transform of the observed process, r(t), will

then be modeled as F(w) = 1(w) + ý(w) where, ý(w) is the spectrum of a stationary noise

process, j(w) E , L, Li]. The fact that f belongs to the class W,,' 2[_,,,] of band-

limited signals implies that the support of I f(t) 2 is not bounded. The objective is,

then, to find a function f(w) E Wn, 2[ -_ ,V] which best fits the Fourier transform £(w) of

the observed process r(t) with minimum time-energy spread; specifically we would like

to minimize the following functional with k < m

(5.1) min [ (f(Wj)-F(Wj))21 subject to t 2k I f(t) 12 dt < so,(,.)f E W ,,2[ _v ] V'I .=1

where f(t) is the inverse Fourier transform corresponding to f(Uw) in W, 2[-V, V].

5.3 Moment Connection via Parseval's Theorem

A rather elegant extension of Parseval's Theorem can be constructed under

appropriate regularity conditions. The Parseval's Theorem for continuous Fourier trans-

form pairs is
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v~~~ I I)1 ~ L0 f(t) 12 dt.

But we know
f)=- I f of(t)_ e- "'a dt.

Take kth derivatives with respect to w

Okf(w) 1o
00_oo it)k f(t) e dtc#a

so that

(k)(w) (w is the Fourier transform of (-it)k f(t).

We can apply Parseval's Theorem to this Fourier transform pair to obtain

Theorem 5.1: J -I (k)(w) 12 dw 00 t2k I f(t) 12 dt.O

Thus, oir optimization problem (5.1) can now be reformulated as
V

(5.2) min E (f(wj) - F(wj))2 ] subject to J I f(k)(w) 12 dw < s*
f E W m , 2j=1 I 0

Using standard Lagrange multiplier techniques, this in turn may be reformulated

as

nv
(5.3) Emi -f (f(W,) f(W)) 2 +Af I(k)(w) 12 dw.E W•m•i_, 2 l j" =1 -v

Indeed expression (5.3) is the form of optimization problem which results in a solution

which is a generalized polynomial spline of degree 2k-i. This result may be

substantially generalized by the theorem given below which is developed in Le and

Wegman (1992).

Theorem 5.2: Let j(w) be a band-limited spectral process with transient inverse Fourier

transform and F(w) be the observed spectral process defined over some finite band

- V _< w < V. We model this spectral process as
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F(M) = &(0) + O()

where ý(w) is some stationary white noise process. Let A be the time spread measure,

defined as follows:

A(f) = aoAj(f) + alAk(f)

where, +00
A•(f) =1 It2k If(t) 12 dt,

-00

and where a% and a, are the appropriately chosen weights. Here f is the inverse Fourier

transform of f belonging to L2(R). Then, the optimal band-limited representation in the

Sobolev space W,, 2[_ v,v] is fx(w) where fA%(w) is the solution to the problem:
n

minimize E [f(Wj) - f(Wj)]2 + AA(f)
E win, 2 _ VV j=1

f% is a generalized L-spline, and A is known as the smoothing parameter. 0

For a general discussion of L-splines, see Wegman and Wright (1983). Notice

that if A(f) = Ak(f) for some large k, then we are constructing a band-limited transient

signal estimator with little energy in the tail of the signal estimate, f., where f% is the

inverse Fourier transform of f.%. If k = 2, then

+ 00

A2(f) = "_0 J t4 If(t) 12t If(2)(W) 12 dw

and our solution is the well-known cubic spline. However, much more interesting and

physically meaningful solutions may be found. If A(f) = aoAo(f) + aA&(f), then for k

odd +00 +00A f)_j i f(t)12 at~a, t2k If(t)l 2at.

Thus, we may also want to impose a total energy restriction on the estimated signal

space. This imposed restriction may, for example, have resulted from a requirement to

minimize channel bandwidth utilization from data transmission systems. Such

modification, thus, yields the following optimization problem for k odd

291



min (f (w) - F(wO)) + Alt I f(w) 2 dw + A. dw
"Ejn-,2 (_ ,y) iWi -( - V

Hence, by our theorem the optimal solution is again an L-spline.

5.4 Computing Band-limited Transient Estimators and Example

The rather elegant result that our band-limited transient estimators are

generalized L-splines makes the numerical computation of the estimators rather more

routine since algorithms already exist for computing L-splines. The fact that we can

impose total energy limits as well as tail-energy limits is an unexpected bonus. Our

interpretation of Theorem 5.2 is as follows. We recommend doing an initial spectral

estimation to establish the bandwidth, - v < w < v, over which we want to estimate j(w)

(or more precisely the signal, g(t), its inverse Fourier transform). This initial spectral

estimate will also allow us to select the sampling frequencies, Wj. We recommend

selecting these wj as the frequencies with the largest spectral mass. Notice that we may

regard a transient signal, g(t), as the product of a signal of infinite support with an

indicator function of a closed interval. It is well-known that Fourier transform of an

indicator function is the so-called Dirichlet kernel which has a large central lobe and

decreasing side lobes. By choosing sampling frequencies wj at the location of the central

and side lobes, our technique allows us to to recover the indicator to an excellent

approximation. Thus not only do we estimate the transient signal because of the

penalty term for out-of-band energy, but because of the choice of sampling frequencies

as well. Figure 5.1 graphically illustrates the results of our technique.
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